Active suspension systems and components using piezoelectric sensing and actuation devices

A lightweight, high performance, active suspension system utilizing piezoelectric regulated springs, and a method of manufacturing the suspension system, is described. Piezoelectric material is bonded to suspension springs, and excited appropriately to vary the stiffness of the suspension system. A method of controlling the stiffness of a spring includes piezoelectric material bonded to the spring, a sensor system for generating a signal proportional to the loading imposed on the spring, and controller for exciting the piezoelectric material in response to the signal. A control system for controlling the stiffness of a spring including embedding a plurality of piezoelectric particles within an electrically conductive matrix forming the body of the spring is also described.
Download pdf
Abstract/Description: A lightweight, high performance, active suspension system utilizing piezoelectric regulated springs, and a method of manufacturing the suspension system, is described. Piezoelectric material is bonded to suspension springs, and excited appropriately to vary the stiffness of the suspension system. A method of controlling the stiffness of a spring includes piezoelectric material bonded to the spring, a sensor system for generating a signal proportional to the loading imposed on the spring, and controller for exciting the piezoelectric material in response to the signal. A control system for controlling the stiffness of a spring including embedding a plurality of piezoelectric particles within an electrically conductive matrix forming the body of the spring is also described.
Subject(s): 280/5.515
267/162
267/228
280/124.134
280/124.141
280/124.165
280/124.171
310/316.01
Date Issued: 1995-02-21