University of Toledo U.S. Patents

This collection includes United States patents for inventions by UT faculty, students and staff that list UT/MCO/MUO as the original assignee (owner). These patents include those assigned to the University of Toledo as well as to the Medical College of Ohio/Medical University of Ohio prior to the merger in 2006. Only granted patents, not patent applications, are included. Use the 'Search within this Series' box to search for keywords in the authors, titles, or abstracts of the patents.

The University of Toledo, Technology Transfer Website

Production and use of purpurins, chlorins and purpurin- and chlorin-containing compositions
Families of chlorins, families of purpurins and metal complexes thereof are disclosed. The purpurins and their metal complexes have the structures of FIGS. 1, 7, 14-18, 29-38, 44-48 and 54-58 of the attached drawings. The chlorins and their metal complexes have the formulas of FIGS. 2, 8, 19, 20, 22, 23, 24, 25, 27, 28, 39, 40, 42, 43 and 49-53 of the attached drawings. Solutions of the purpurins, of the foregoing and other chlorins and of the metal complexes which are physiologically acceptable for intravenous administration are also disclosed, as are emulsions or suspensions of the solutions. The solvent for the solutions can be a product of the reaction of ethylene oxide with castor oil. A method for detecting and treating tumors in human and animal patients is also disclosed. The method comprises administering one of the purpurins, chlorins or metal complexes to the patient. For detection, the patient is then illuminated with ultra violet light; for treatment, the patient is illuminated with visible light of a wavelength at which the purpurin, chlorin or complex administered shows an absorption peak.Families of purpurins, chlorins and metal complexes which can be detected by nuclear magnetic resonance or by an instrument that detects ionizing radiation are also disclosed. These compounds have the formula of one of FIGS. 1, 2, 7, 8, or 14-58 and a structure which is enriched in an atom that can be detected by nuclear magnetic resonance, e.g., C-13 or N-15, or by an instrument that detects ionizing radiation, e.g., C-14.
Production and use of dimers of hematoporophyrin, purpurins, chlorines and purpurin- and chlorin-complexes
Dimers which are either esters or amides of (1) a purpurin, a chlorin or a metal complex and (2) hematoporphyrin or a purpurin, a chlorin or a metal complex are disclosed. The purpines and their metal complexes have the structures of FIGS. 1, 7, 14-18, 29-38, 44-48 and 54-58 of the attached drawings. The chlorins and their metal complexes have the formulas of FIGS. 2, 8, 19-28, 39-43 or 49-53 of the attached drawings. Solutions of the purpurins, chlorins and metal complexes which are physiologically acceptable for intravenous administration are also disclosed, as are emulsions or suspensions of the solutions. The solvent for the solutions can be a product of the reaction of ethylene oxide with castor oil. A method for detecting and treating tumors in human and animal patients is also disclosed. The method comprises administering one of the dimers to the patient. For detection, the patient is then illuminated with ultra violet light; for treatment, the patient is illuminated with visible light of a wavelength at which the purpurin, chlorin or complex administered shows an absorption peak or with X rays or other ionizing radiation.Dimers of purpurins, chlorine and metal complexes which can be detected by nuclear magnetic resonance or by an instrument that detects ionizing radiation are also disclosed. The purpurins, chlorins and coplexers of these dimers have the formula of one of FIGS. 1, 2, 7, 8, or 14-58 and a structure which is enriched in an atom that can be detected by nuclear magnetic resonance, e.g., C-13 or N-15, or by an instrument that detects ionizing radiation, e.g., C-14, I-131 or Tc-99m.