The University of Toledo
The University of Toledo Digital Repository

Theses and Dissertations

2007

Secure distributed single sign-on with two-factor
authentication

Kaleb Brasee
The University of Toledo

Follow this and additional works at: http://utdr.utoledo.edu/theses-dissertations

Recommended Citation

Brasee, Kaleb, "Secure distributed single sign-on with two-factor authentication” (2007). Theses and Dissertations. 1261.
http://utdr.utoledo.edu/theses-dissertations/1261

This Thesis is brought to you for free and open access by The University of Toledo Digital Repository. It has been accepted for inclusion in Theses and

Dissertations by an authorized administrator of The University of Toledo Digital Repository. For more information, please see the repository's About

page.

http://utdr.utoledo.edu?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/theses-dissertations?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/theses-dissertations?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/theses-dissertations/1261?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/about.html
http://utdr.utoledo.edu/about.html

A Thesis

Entitled

Secure Distributed Single Sign-On with Two-Factati#entication

By

Kaleb Brasee

Submitted as partial fulfillment of the requiremefar

The Master of Science in Engineering

Advisor: Dr. Kami Makki

College of Graduate Studies

The University of Toledo

December 2007

The University of Toledo

College of Engineering

| HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER
MY SUPERVISION BYKaleb Brasee

ENTITLED Secure Distributed Single Sign-On with Two-Factor
Authentication

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMBTS FOR

THE DEGREE OF Master of Science in Engineering

Thesis AdvisorDr. Kami Makki

Recommendation concurred by

Committee

Dr. Gerald Heuring
On

Dr. Hilda Standley
Final Examination

Dean, College of Engineering

An Abstract of

Secure Distributed Single Sign-On with Two-Factati#entication

Kaleb Brasee

Submitted as partial fulfillment of the requiremefar

The Master of Science in Engineering

The University of Toledo

December 2007

In this thesis we present the Secure Distributedji8iSign-On (SeDSSO) architecture.
SeDSSO provides secure fault-tolerant authenticatising threshold key encryption
with a distributed authentication service. Thehauatication service consists pftotal
authentication servers utilizing &) threshold encryption scheme, wher@listinct
server-signed messages are required to generatessage signed by the service.
Existing distributed SSO schemes such as CorSSOaresPassport are examined and
the benefits of our system over these schemesrasemed. SeDSSO establishes secure
portable identities by defining a two-factor auttestion scheme that uses both a
username/password and a unique USB device. Thebination of a distributed
authentication service and two-factor identitidevas SeDSSO to securely authenticate

users in any environment.

Table of Contents

ADSITACT ...t e e ii

Table Of CONTENTSt e e e e \Y
LiSt Of FIQUIES ...vi i et e e e e re e e e e e ene eneann Vi
IO |] 70T [[1o] I P 1

1.1, MOBIVALION ... e e e e e ee e L
1.2. Thesis Organizationc.cooeieviiiiieiieiieieine e e e e 2

2. Related WOIKuieie i e e e A
2.1. Two-factor Authenticationooveiiiiiiiiiiiiiiie e 4
2 I A O L= V1 4
2.1.2. Two-Factor Authentication Exampleoo . 6
2.1.3. Advantages and Disadvantagesccccoeveenevnnnnn 1o
2.2. Threshold Cryptography ..o 8
2.3, COrSSO it 10
2.3.1. CorSSO Identity Setup Protocolsccceeennn 11
2.3.2. CorSSO Client Authentication Protocol 11
2.3.3. CorSSO Client-to-Application Server AccBsstocol 12
2.3.4. CorSSO Disadvantagescoeevieiieiieieiieieiee e e 12
2.4, TRIESPASSPOIT ...ttt e e e e 12
2.4.1. ThresPassport Identity Setup Protocolscc........... 13
2.4.2. ThresPassport User Authentication Protacal............. 14
2.4.3. ThresPassport Single Sign-On Protocol 14
2.4.4. ThresPassport Disadvantagesccoceevvivieiinieniennns 5..1
2.5. Distributed Certification and COCAcooiiiiiii i et e 16
3. SEDSSO COMPONENTS ...t e e e e e e e e e 19
3.1. Authentication SErVICEooiiiiiiiiie e e e e e 20

3.2. Service ProVidersooooe i e 21
3.3 USBIS oniiiitieeeee 22

4. SeDSSO User Identity SYSteMouvieiiiiie it e e 24
4.1. USB Identity Device (USBID)cooviiiiieiie i, 24
4.2. CoUNtEr SYSTEIM ...t et e ee e 26

4.3. Counter Value Operationccoeveeiieiie e iiieiieiieienneeneenns 27

D DS SO PrOCESSES ittt ittt i et i e i 29

5.1, SELUP PIrOCESSESeiiiiiieiie et e e e et aans 29
5.1.1. Session Key Generationccoovovviiiiieiieninnnnnnn. 30
5.1.2. Adding an Authentication Servercooeeennnen. 31

iv

5.1.3. Adding a Service Providerccociiiiiii i

5.1.4. Addinga USerccoooiiiiiiiii i 32
5.2. AUthentiCation PrOCESSESoitiie it it e e e aaes 34
5.2.1. User Authentication Voucher Generation 35
5.2.2. Initial User Sign-on to a Service Provider............ 37
5.2.3. Subsequent User Sign-on to a Service Peovid........... 39
5.3. Identity management ProCESSESovuiveiviiieniineneineneannns 41.
5.3.1. User Account Invalidationccooviiiniiin e, 41
6. SeDSSO Implementation and ResultSccccoviiii i e 43
6.1. Certificate Authority Server Programc..cocueeeeenens 44
6.2. Authentication Server Programccovve v viiiviieeennnn. 45
6.3. Service Provider Programcooovviiiiiiiiiiieeeeen, a7
6.4. USEr Programcccoeiiiiiii i i e e e e 48
6.5. Implementation TeStScc.evviiiiiiiiie i ieieee e e D0
6.5.1. Test Specificationsccceveiiiiiie i enn2.50
6.5.2. Test Environmentcooiiiiiiiiiiiiiii e e D2
6.6. Test Results . : . 53
6.6.1. User Account Creatlon ... 53
6.6.2. User Sign-on . . cevnn. DO
6.6.3. User Account Invalldatlon PN 1
6.7. SeCUrity ANAIYSISoviie e 61
7. Conclusion and Future WOrKoouuiimes e e e 64
7.1. Conclusionb4
7.2. Future Work : PPN ¢ 1)
7.2.1. Complete Implementatlon 65
7.2.2. Unavailable Authentication Server Detection........... 66

R EIENCES ... e e e e

Figure 2.1:
Figure 3.1:
Figure 4.1:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:

Figure 6.6:

List of Figures

Standard encryption compared to tholelséncryption

SeDSSO componentsoceeieiieiii i .20
USBID archit€CtUrecouieie i e e e 25
User account creation timesrfer3 andt =2cc.ooevenee 54
User account creation timesrfer9 andt =5cocevenie 55
User sign-ontimesfor3andt=2coeeeevieiiin v e, 57
User sign-ontimesfo9andt=5.........................eeeeeeeee.. 58
User account invalidation timesrigr 3andt =2 59
User account invalidation timesrigr 9 andt =5 60

Vi

Chapter 1

| ntroduction

1.1. Motivation

As the number of personal Internet-site accountswgy organizing and
remembering confidential identity information becgsmmore difficult for the individual.
It is often impossible to use the same informationevery site. Common usernames
may already be taken and sites frequently imposquenrequirements for passwords
(e.g., the password must consist of both lowercas® uppercase letters or it must
contain a digit). In an RSA Security survey, mtran 30% of users reported needing
between 6 to 12 different passwords for their bessarelated logins and almost 25% said
that they needed to remember 13 or more passw8fddNhen people cannot remember
all of their information and are forced to physigakcord it, the secrecy of their identity
is jeopardized.

Single sign-on (SSO) allows users to verify thdentity on a central system and
gain access to many different resources that thestentral system. The act of proving
an identity is known as authentication. A widebed Internet SSO system could help

people protect their identity secrets by replagmany site-specific logins with a single

SSO login. This would make it possible for therage user to choose secure identity
information and remember it without writing it downCorrespondingly, this system

would reduce the need for insecure transmissiofoginhs through email when users

forget their information.

Various SSO architectures have been proposed apléEnmented over the past
decade, but none have been used significantly me-scale public Internet domains.
Microsoft Passport is one of the most well-knowterapts at widespread SSO. Many
web sites initially planned to trust Passport idesd that belonged to their users.
However, after numerous difficulties and vulnergie$, Passport support was abandoned
by every site except those belonging to Microsa]]|

The motivation for this thesis is the design of 806 system that offers
improvements over existing SSO schemes. Becausg usrs and sites will rely on the
SSO central authentication system, it needs ta ¢diesafe authentication that remains
available and secure through partial hardware afidvare failures. A robust system
must also provide a way for users to safely signfem any location, including
potentially insecure computers found in places agternet cafés and public libraries.
Our system is called SeDSSO (Secure DistributedI&i8Sign-On) and it provides SSO
services with a fail-safe distributed authenticatisystem and secure two-factor

authentication user identities.

1.2. Thesis Organization
This thesis consists of seven chapters. Chaptetrdduces our motivation for

designing SeDSSO. Chapter 2 presents an ovenfigve dollowing related work topics:

two-factor authentication, threshold cryptograpéyisting distributed SSO systems, and
distributed certification. Chapter 3 covers theib@omponents that make up a complete
SeDSSO system. Chapter 4 details SeDSSO useitignincluding the two-factor
authentication scheme and the USB device used doursly transporting identities.
Chapter 5 fully describes the processes execute8dBSSO components. Chapter 6
discusses our SeDSSO prototype and the resultertdrmed tests. Chapter 7 presents

our conclusions and suggested future work.

Chapter 2

Related Work

This chapter begins with an overview of two-factarthentication. Next, a
summary of threshold cryptography is presentede @mapter then discusses CorSSO
and ThresPassport, two existing distributed SS@reels. A distributed SSO system
provides single sign-on to users and allocatesrésponsibility of authenticating these
users to a network of individual authenticatiorvees.

Finally, the topic of certification is presentedd certificate binds information
about an entity to that entity’s public key andlutles the signature of a trusted authority
to vouch for the authenticity of the informationntained on the certificate. An existing
distributed certification authority scheme knownGSCA (Cornell Online Certification

Authority) is examined.

2.1. Two-Factor Authentication
2.1.1. Overview
The username and password system was introdudbd garly 1960s as the need

emerged to secure identities on timesharing syst@hs Computing has changed

dramatically since that time, expanding from goveent and research to business and
personal use. However, username/password paies fieawained the standard proof of
identity ownership. This method is now the wealigdt in modern computer security.
The Carnegie Mellon Computer Emergency Responsmm TE&RT) reports that 80% of
all security breaches it examines are related ss\Wwards [1]. Identities can be stolen
through technological means such as keystroke hggagnd phishing schemes. They can
also be stolen through social engineering methadging from the complex (posing as
an administrative authority and coercing the userthe simple (viewing a handwritten
username/password lying on a desk).

In light of these weaknesses, systems have beeeplaged which require
additional identity proof. Identity proof mechamis are divided into general categories
known as thddentity factors A two-factor authentication system requires thalid
credentials from two different factors be presenbedore a user is trusted. Many
different methods can be used to prove an ideriitymost fall into one of the following
factors:

1. “Something you know” — memorized information (e@password or answer to a
secret question).

2. “Something you have” — possession of a unique iteomtaining secret
information (e.g., a smart card, bar code, or UBtBfface device).

3. “Something you are” — a physical trait that can btenverted to digital
information using specialized hardware (e.g., aaetr fingerprint scan or voice

recording analysis).

On the Internet the username/password is a gepasdlumed first factor
belonging to the “something you know” category. OF@actor authentication system
designers must choose a second factor and decwetdhamplement it. The second
factor is often a physical device that stores a kmnerates passwords, or responds to

challenges from the authentication server.

2.1.2. Two-Factor Authentication Example

An example of an existing two-factor authenticateystem is RSA’s SecurlID.
SecurlID identifies users with a two-factor authestibn system consisting of a personal
identification number (PIN) and numeric passwordtthsers know, and a device that
users have [22]. This device (known as the tokeatures a processor and memory with
a small numeric display, and it is configurable ifedividual users. It generates a six-
digit code every minute and constantly displaysdbée. In order to login, a user must
enter both their PIN and a concatenation of theemarpassword with the current token.
Authentication is successful if the PIN exists, tmeémeric password for that PIN is
correct, and the six-digit token code matches thde@xpected by the server. Since the
SecurlD token codes are time-dependent, the semwdrthe token must be initially
synchronized and maintain the same time valuesderdor the codes to match.

SecurlD is widely used and it significantly complies identity theft.
Authentication is not possible without both knowgedof the PIN/password and
possession of the token. However, under the rgidumstances it is possible to
intercept communications within this system (aslvesl other systems using time or

usage-dependent information such as one-time padsyvand perform a man-in-the-

middle attack to hijack the user’'s authenticatiequest [23]. Methods to recover the
secret token key have also been discussed [24l], t&¢ system is far more secure than
one-factor authentication, with no successful &gaceported in SecurlD’s 15-year

lifecycle [22].

2.1.3. Advantages and Disadvantages

The most obvious advantage of two-factor authemtioais the increased
difficulty for a malicious party to acquire both thantication factors. Standalone
keystroke-logging attacks are usually insufficibatause the captured data is not enough
to gain authentication, will not work for subsequiagins, or will only work for a very
short time. Additionally, if a malicious user jusibtains a token-generating device it is
useless because the login information is not knowime difficulty of obtaining both
factors is why two-factor authentication is ofteferred to astrong authentication

Even though two-factor authentication makes eleatrddentity theft more
difficult, it is not perfect. In systems using grbased passwords there is a small window
of opportunity in which a real-time attack can acg20]. In SecurlD the window of
opportunity is at most 60 seconds but an attackdcineoretically take place in this time
frame (although as RSA stated, such an attack é&iasybe reported). A challenge and
response two-factor system eliminates this thremtbse each new session requires a
response to a different random challenge.

On a more basic level, the argument has been rhatléno-factor authentication
is inadequate to protect users against identitff #rel phishing and that it “doesn’t solve

anything” [25]. Man-in-the-middle attacks allow veeb site to pose as the service

provider's site to the user, while actually passicgmmunications back and forth
between the user and service provider. Once theimthe-middle system has captured
the necessary information from this real connectibcan perform any action as the user
with that service provider.

Trojan attacks work by installing inconspicuoustsafe directly on the computer
that the user is operating. Once this softwarealetthat a secure connection has been
established, the Trojan software uses this cormredid perform its own malicious
activities in the background.

Many previous two-factor authentication schemeshasen vulnerable to one or
both of these attacks. Section 6.7 of this thdgsusses how our system operates in

regards to these risks.

2.2. Threshold Cryptography

Shamir and Blakley independently proposed thestiolel scheme in 1979 [4, 9].
As the title of Shamir’s paper (“How to Share a18€9 indicates, a threshold scheme is
used to safely share a secret between distinagepa that no individual party possesses
the secret. A threshold scheme divides the sdatatinton data pieces and performs the
division so that data piecest < n, are required to recreate the secret data. Eaeh dat
piece is unrelated to all of the other pieces aoduiing less thart provides no
information about the original data. Such a schenk@own as at(n) threshold scheme.

In cryptography, threshold schemes can be useatlvide a private key into a
number of partial keys. Partial keys can be useehtrypt and decrypt a message like a

full key. When a message is encrypted witlifferent partial keys, the resulting

messages can be combined into one encrypted megstgs identical to the message
encrypted with the private key. This act of conmgnpartially signed messages can be
done without knowledge of any of the keys. If avate key is split using at,(n)
threshold scheme thenservers will possess a partial key and it will téke signature of

t servers to create a message signed with the prkegt Therefore, an attacker will need
to maket successful intrusions on different authenticaservers to gain control of the

authentication service private key.

Message

A 4

M Encrypt with ks1
i Message ,/ » Encrypt with kst

Figure 2.1: Encrypting a message Witrartial keys and combining the partially encrypted
messages produces the same output as a simplegocnyith k. However, with threshold
encryption no party is required to possess theeeptivate key.

Combine
<Message>ks, ..., <Message>ks
<Message>ks

When choosing the numbetsand n, n is simply the total number of servers
available. This number can be changed withoutctiffg any of the partial keys or the
original key, so long as remains greater than The numbet cannot be modified
without changing either the partial keys or thegio@l key. Shamir suggested the

formulan = 2t — 1 as a robust way for determining the total neindd partial keys and

the number required to perform threshold operatjdhsWhen this formula is applied to
a group of authentication servers, authenticatostill possible even Ifn/ 2] (ort — 1)
servers are inaccessible. Similarly, an attacker steal up ton / 2] (or t — 1) partial
keys without learning the group’s private key.

Modifications to the original Shamir threshold scieewere proposed in [10].
These modifications fix a vulnerability that allowsmalicious user to cheat other parties
in the system and acquire the partial keys necgdsareconstruct a full key. More
current schemes for threshold signatures usindRtB& encryption algorithm [16] have
been proposed; a popular design is Shoup’s sch&fje Additionally, numerous papers
have been written that discuss the applicationhoéshold cryptography in distributed

system operations [13, 14].

2.3. CorSSO

Two distributed threshold SSO systems have recdrggn proposed. The first
system to be created was CorSSO (Cornell Single-&ij, a SSO system that provides
distributed peer-to-peer network authentication [Z]his design moves authentication
services that are commonly provided by applicatiervers (or service providers) onto a
set of dedicated authentication servers. A thheslsztheme is used to split an
authentication system’s private key into a set afipl keys, so that user authentication
requires the work of several authentication serirestead of one. In addition to allowing
users to create one identity and use it on allhef application servers, this system
improves scalability, distributes trust, and pr@ddault tolerance in the authentication

process.

10

2.3.1. Cor SSO | dentity Setup Protocols

CorSSO defines a client/user as a principahat creates both a public k&
and private kexc for itself. Likewise, an application servBrcreates its private keg
and public keyKs. Sbecomes accessible to principals by registeringpitesmation with
a setN; of authentication servers (known as a sub-poléty. sThe authentication servers
in N; create a private kelg and public keyK; for this particular set of authentication
servers. K; is sent toS for decrypting authentication system messageshéndient
authentication processk; is split using threshold encryption and a uniqaeigl key is

given to each authentication server. No authetmicaerver stores the fuij.

2.3.2. Cor SSO Client Authentication Protocol

To access an application server, a client mudtduscessfully authenticate with
authentication servers in the application serveasiespace set. The cligbtrequests an
authentication policy (a set of chosen authenticaervers) from application servér
andSresponds by sending back a policyRBetith which C must authenticateC selects
a sub-policy sel; with which it has registered, containing only edts that are also in
the setP. C requests a certificate vouching for its identitgnh each authentication
server. IfC's identity verification is successful then eachihamtication server creates
the same certificate and signs it with a differpattial key ofk;. The authentication
servers send these partially signed certificatek b@aC. WhenC has received partial
certificates from the authentication serversNp it uses threshold cryptography to

combine them into a single certificate signed it private key;.

11

2.3.3. Cor SSO Client-to-Application Server Access Protocol

When C has generated the certificate signed witht contactsS again and
requests an authentication challenge. This chgdleis a pseudo-random generated
message tha encrypts with its private kel and sends t€. C usesKsto decrypt the
message, encrypts the same message with its pkiegte and sends both the encrypted
message and the certificate signed Witback toS. S grantsC access to its services only
if it can verify that the challenge message wasesgwithC's private key and that the

authentication servers have vouchedGtr identity.

2.3.4. Cor SSO Disadvantages

CorSSO lacks a mechanism for transferring a ugen&ate key so that the user
can gain authentication on different computers. pyigy this key without protection
would allow anyone who steals the key to stealidieatity of the user. CorSSQO’s use of
the private key to identify users is similar tonti&cation in the Kerberos authentication
system which has been noted for its mobility liidas and lack of security in untrusted

environments [17].

2.4. ThresPassport

ThresPassport is a distributed SSO system thattbseshold-based key sharing
to split a service provider’'s secret key into acfgpartial keys [3]. It was developed to
address some shortcomings of the existing CorSersy In order for a service
provider to trust a user’s identity, a set of auatfeation servers must be able to construct

a voucher message for the user that is signedthatisecret key. In contrast to CorSSO,

12

ThresPassport does not rely on a trusted authtwripperate a public key infrastructure
(PKI) for its service providers, clients, and autheation servers. ThresPassport also
replaces CorSSO'’s randomly generated private ahticpelient keys with one-way hash

keys that can be generated using only a usernachpaasword.

2.4.1. ThresPassport I dentity Setup Protocols

The ThresPassport protocol begins by establishimg identity of service
providers and users with a setrodiuthentication servers. A service provi@acquires a
unique identifier numbe®ID. It then creates a secret K€y and calculates the inverse
key Ks® such thatks® = (1 mod p — 1)) /Ks, wherep is a randomly generated prime
number. A{, n) scheme is used to spit into n partial keys, where signatures frarof
these partial keys are required to act as theechtty Ks. S then sends its unique
identifier SID along with partial key&'s throughK"s to authentication servers to A,
respectively, with each server receiving a differpartial key. Each authentication
server stores the partial key aBtD and sends a success message to

Users are identified by a uniqudD created by hashing their username, and a
password is associated with th#D. For each authentication server, the username,
password and authentication server identéieare combined into strings and a one-way
hash is executed on this combination to createya(#enotedK'y). This process is

performed for each server to create kys throughK"y. U sends th&JID and correct

! A hash function, also known as a one-way hashatesea reproducible signature or fingerprint of som
input data. The function operates in such a wayithis very unlikely to generate the same sigreatu
output from different input data. It is trivial talculate a hash, but practically impossible towdate the
original data from the hash (hence the term oneyway

13

K'y to each authentication server. Upon successtuage of these values, the servers

return a success responséJto

2.4.2. ThresPassport User Authentication Session Protocol

User authentication with a single authenticatiomvese is a straightforward
process. The client software uses the enterecharse/password and the authentication
server identifier to generatdlD andK'y. UserU then requests authentication from
authentication servek. A generates a noneg and sends it t&J. U generates its own
nonceny as well as a random numbgrand encrypts the messageu<ny, na > with the
key K'u. U sends both th&JID and this encrypted messageAto If A can decrypt this
message correctly using the key stored WD and can verify that) received and
decrypted the noncea, then A generates its own random numbgrand sends the
message <, Na, Ny > encrypted withK'y to U. Now that bothA and U have the
numbersra and ry, they each create a temporary session &y by hashing a
combination ofro andry. This session key is used until the sessionde@manually or
expires.

This process is not executed in isolation, but cxdetween the user and each

authentication server as a part of the single sigprotocol described in the next section.

2.4.3. ThresPassport Single Sign-On Protocol
When a user attempts to access a service providefollowing protocol is used
to verify the user’s identity and grant or denyessc The usdd begins by requesting

access to a service provider Sresponds with itSID, a noncens, and possibly a list of

14

authentication servers ifJ does not already possess such a listl choosest
authentication servers from the optional list @nfra previously-used list and establishes
session key connections with each as describdukeiprievious sectioJ then sends the
SID, UID, and noncens to each authentication server. Each server amtstthe same
message UID, U, ns > and signs it with the partial key received wi®istered on
the authentication network. The resulttiglistinct messages that contain the same
information but are signed withdifferent partial keys. The authentication sens¥ad
the messages backlth andU uses threshold cryptography to combine them taerba
message YID, U, ns> signed withKs. U sends this message along withUt® to S. If

the message encrypted wils public key contains the original nonce and ocirk¢lD

then the user is granted access to the service.

2.4.4. ThresPassport Disadvantages

ThresPassport does not require a public key irgerRKI), and in [3] the authors
claim that this is an advantage over systems #igtan a PKIl. PKI algorithms require
more computational power, and distributing a pubhd private key to each entity in the
system increases the account management overkiEadkever, it is still arguable that the
positives of a PKI outweigh these negatives. Ine§Rassport, there is no way to verify
that a contacted authentication server is genuingll that is known about an
authentication server is its IP address Atld, as the servers do not use cryptographic
keys of any kind. Without a private key to verthe authentication server, it would be

possible to execute an interception attack or Ddt&up table modification and allow

15

another system to pose as an authentication sevithout needing to possess any
credentials.

ThresPassport’s username/password identity allosersuto login with any
computer. However, a ThresPassport identity isafer than any other keystroke-based
identity. Capturing a user’s username and passvgmsimnple, as the software to perform
this capture could easily be installed on a pubili@chine by an identity thief or on a
home machine by a virus. If a ThresPassport usegis information is captured, the
malicious entity gains control of the user’'s acdoun

The ramifications of identity theft in SSO are ¥eorse than theft in today’s one-
login-per-site system. Instead of gaining accessnie area of a user’s identity the thief
gains complete access, from the trivial (websited &rums) to the critical (bank
accounts and credit cards). SSO needs a sectaityefvork that allows it to be easily
used in multiple locations but also protects idergi with something stronger than a

username and password.

2.5. Certification and COCA

Certification is a method of providing trust in aKIPsystem. Without
certification, an entity’s key is vouched for byathentity only. When an uncertified
system claims to belong to a certain individuat@mpany, there is no guarantee that this
is true. Certification uses certificate authostior CAs), trusted third parties that
everyone in the system can rely upon, to secumadlycarrectly vouch for the identity of
the entities. The CA generates a certificate dutie account creation process that binds

personal information (name, address, phone numbard other identifying

16

characteristics) with the entity’s public key, agigns a portion of the certificate with its
own private key. To verify that a certificate ismgiine, the CA'’s public key can be used
to decrypt the certificate’s signature and see thatCA signed the certificate with its

private key.

The trust in certification is usually built in dha, with the set of working CAs all
receiving their individual certificate from a highséecure root CA. The root CA is never
connected to any network, it is constantly protédte a restricted-access setting, and
very few people can access the system. For themsoms, if a working CA server
possesses a voucher certificate signed by theQAdts authenticity can be trusted more
than the identity of an authentication server moa-PKI environment.

As with authentication systems, a centralized @A also act as a central point of
failure. To solve this problem, the distributedtifeation system known as COCA
(Cornell Online Certification Authority) has beenoposed [5]. COCA uses threshold
cryptography for distributed certificate operaticasd a Byzantine quorum system for
fault-tolerance [11]. The threshold scheme empolyg COCA is at(+ 1, n) scheme
wheren= 3t + 1. With these constraints, COCA will maintairrrect operations with up
to t compromised certification servers. The threstalgs are periodically updated with
a “proactive secret-sharing protocol”. In orderctmntrol the system, a malicious party
must steat + 1 partial keys in a relatively short amount ofi¢i. Otherwise, the keys will
expire and the attack will fail.

Each COCA certification server possesses a paeagl of the entire system’s

private authentication key. A message must beesidiyt + 1 partial keys to create a

17

threshold-encrypted message signed by the private kAdditionally, each server

possesses an individual public and private keyémnmunication within the certification

network. These individual intranet keys can bengea frequently without the need to
propagate this change to users and service praviddnis operation adds security within
the certification service but is also simple arfitent to perform.

Unlike the threshold protocols in CorSSO and TRessport where the user
receives all of the partially encrypted messages @mbines them, COCA users only
need to contact one of the certificate serverse ddntacted server forwards the user’s
request tot + 1 other certificate servers. When enough damiassages have been
returned the contacted server combines them ineomessage signed with the whole
system’s private key. This approach makes it pbsdor COCA users to access the
system without needing to possess individual sepudtic keys, and prevents against a
possible attack where a user could be sent masg fadrtial messages and would have to

determine which ones were real.

18

Chapter 3

SeDSSO Components

This chapter provides a detailed descriptionha& individual components that
make up the entire SeDSSO architecture. SeDSSGistenof three different
components: service providers, users, and autlaioticservers. These components are
shown in figure 3.1. Service providers are Intesites that offer a service to users, such
as email, forums, shopping, banking, ®tdJsers are individuals who access service
providers to perform desired tasks. Each usergssgs an account that allows service
providers and authentication servers to identifgnth Authentication servers store
information about all users and service provideet have registered with the SeDSSO
system. Multiple authentication servers form th&hantication service which is

responsible for authenticating SeDSSO users.

2 SeDSSO service providers are not to be confusdgdimternet service providers (ISPs), which
are transparent to SeDSSO.

19

LR Authentication Service Service
(n authentication servers, Providers
1 certificate authority server)

Figure 3.1: Users, Service Providers, and the éntibation Service are the three basic
components of the SeDSSO system.
3.1. Authentication Service

Authentication servers are individual systems thatk together to vouch for the
identity of users. Because they authenticate uamts store information about each
SeDSSO user and service provider, these servers brusigh-performance high-
availability systems that can perform many inteesdata storage, computation, and
network 1/O tasks simultaneously. Collectivelye tgroup of authentication servers is
referred to as the authentication service.

SeDSSO implements threshold encryption by deptpyimuthentication servers
and generating one public and private key for thi&re authentication service. This key
generation takes place on the certificate authai@p) server. The authentication
service key generation is its only task, it is megennected to a network, and it is
physically guarded. These steps are required g$arerthe security of the authentication

service’s public and private keys and thereby ma@entrust in the service. The CA

20

server splits the private key intopartial keys with at(n) threshold scheme, and one
partial key is given to each authentication servesince no authentication server
possesses the entire private key, at leastvers must sign an identical message in order
to act as the authentication service. Every user service provider in the SeDSSO
system is given access to the authentication semitlic key, making it possible to
verify messages signed by the authentication sepivate key.

Individual authentication servers each possessf-@aeerated public and private
key to use for server-to-server communications,lamio the intranet keys found in
COCA. ltis only necessary that authenticatiorveey know these keys, and they do not
need to be distributed to users and service provideThe presence of these keys

facilitates secure communication within the autloation service.

3.2. Service Providers

Service providers offer some type of service tersishrough the provider’'s web
site. The service provider can be a business Welmsa personally-owned site and can
offer any combination of free or payment-basedisesy The only requirement is that
the service provider has the need to identify itlial users. Joining SeDSSO allows
this provider to offer personalized services tarsisgthout having to invest in standalone
authentication software and hardware, because utiemtication service performs this
function for all service providers.

When a service provider account is created, given a unique service provider
ID generated by the authentication service. Theic® provider creates its own public

and private key pair and sends the public key ® dlthentication service. Each

21

authentication server associates the public kelp Wie service provider ID. Once the
service provider has been added, it can start #ogefogins from SeDSSO users as
described by the sign-on protocol.

Although the authentication service centralizeshantication for the entire
SeDSSO system, its functionality does not extentb ispecific service provider
requirements. Service providers must store a#-gitecific user data on their own
servers, and can do this in any way they chooselo#g as the stored user data is related
to SeDSSO user identifiers then the service prowidie be able to recall the data for that

user as soon as the sign-on procedure is completed.

3.3. Users

The user account is an individual’'s representataonthe SeDSSO service. A
user’s identity is represented by a username asslad as well as a public and private
key. The user creates all of these values, butudename must be verified by the
authentication service to ensure that it has nenlgeviously chosen. The username
(and the corresponding username hash) is the iaftwm by which service providers,
authentication servers, and other users identifindividual. It is possible for a person
to separate their identity by possessing multipmants, although the need to remember
too many usernames and passwords negates onerohjbebenefits that a SSO identity
provides.

An email address may be entered at the time of aseount creation. This
address can be supplied by any email provider, évirey are not part of the SeDSSO

system. When the creation process is complete, naail econtaining the new user’s

22

username and password is sent to this addres®riignen email address when creating
an account is not required, but it can be donerteige an additional way to recall the
account password.

A user can sign on to any service provider with dri her existing SeDSSO user
identity. Upon a user’s first login, the servia®yder adds a new record to its own user
database. Without sending any additional datd¢oservice provider, a user should be
able to perform tasks that do not require persweeafication (such as browsing a store’s
items or posting comments on a forum). In situsiovhere a SeDSSO identity must be
tied to a real-life identity (such as money manageinand store purchases) the user will
need to provide additional information to the seevprovider. This information will be

associated with the user’s account on the servmager system.

23

Chapter 4

SeDSSO User Identity System

SeDSSO represents users with a two-factor identibynsisting of their
username/password as well as information store@ @pecialized USB device. The
username and password is the factor that they kamdvthe information on the USB
device is the factor that they have. Possessidmotif factors is required for a user to
successfully authenticate with the SeDSSO systéhe advantage of this system is that
a coordinated effort is required to steal a usdesitity, and classic one-factor attacks are
insufficient. Keystroke logging software cannotess the USB device information, and
the theft and examination of the USB device dodgeweal the corresponding username

and password.

4.1 USB I dentity Device (USBID)

The SeDSSO USB identity device (USBID) is a spexsal device that combines
a built-in processor with flash memory and commates with a computer through the
USB interface. All of the hardware is housed icaging the size of a normal USB flash

drive. The USBID is responsible for storing théolwiand private keys for one or more

24

users, as well as the secret counter values thaw alsers to gain authorization with
service providers. This device must be accesdipleéhe client software every time
SeDSSO account creation or authentication is regdes A similar USB-interface
computation device with specialized hardware wap@sed in [12], but was designed
for electronic payment instead of SSO identity fproo

The USBID architecture is shown in figure 4.1. Twecessor is powered by the
USB port connection. The USBID processor generidwesiser’s private and public key
when the account is created and is responsiblpddbrming all operations that require
the use of identity factors, such as signing a aggssvith the private key. This makes it
unnecessary to pass the user’s private key todimpater where it could be observed by
a program designed to retrieve this informatiorhe Ppublic key is passed to the user’'s
system and sent to the authentication service ttmage, but the private key remains

exclusively in the USBID and is encrypted with tiser's password.

To
User USBID Processor USBID Memory

system

o)

(contents encrypted
with User passwords,
accessible anly
through processor)

(interacts with User
system and accesses
USBID memary)

Figure 4.1: The USBID consists of batlprocessor and memory. The memory cannot be
accessed directly by the user.

When a communication message needs to be signédgdine authentication

process, the client software passes the message 10SBID processor. The processor

25

retrieves the encrypted private key from memory dedrypts it with the password.
Once the private key has been decrypted it is tsesiign the message, and the signed
message is returned to the client software on $k€sisystem.

The USBID memory is standard flash memory. Howguatike common flash
drives, the USBID does not allow access to the mmgrtitwough a computer file system.
Only the USBID processor can access this memorye @lient software translates
actions in the SeDSSO client software user interfado low-level device driver
commands, and these commands indicate to the UBRI€essor what information must
be retrieved during processing. The processor astsa black box, providing the
necessary output but keeping memory retrievalag®miand modifications transparent to

the user system.

4.2 Counter System

The counter system is part of the “have” factor 3@eDSSO’s two-factor
authentication scheme. To make authentication ssipte without the USBID, a
pseudo-random number generator seed is createdtaratl on the service provider’'s
system and the user’s USBID. The USBID uses thd s@ generate a number during the
authentication process and this number is senheoservice provider. If the service
provider generates the same number then the yses&ession of the seed (and therefore
possession of the USBID) has been proven.

Although the authentication service implements factor authentication on its
own by requiring the user’s private key from theBIS, the counter system provides an

effective additional layer of security. Evert duthentication servers are hacked so that a

26

malicious party can gain authentication as a ustérowt the USBID, the service provider
requires the counter value on the USBID indepengenfossession of the correct
counter value is still required to gain accessmy service provider. An attacker who
gains control of a user’s identity without possegshe USBID cannot access any service
providers that the user has contacted in the pasguse once the first authentication has

been performed then a working counter is estallishe

4.3. Counter Value Operation

When a user attempts an authenticated connecti@nsiervice provider for the
first time, the counter value between these twdigmdoes not yet exist. In this case, the
voucher for the user’s identity generated by ththeutication service is sufficient for
authentication. The service provider creates d se&t will be used for generating the
counter, and its successful authentication resptmsiee user includes this seed. In the
future, the service provider will require that tihext counter value be sent by the user in
order to gain authentication.

Three variables describe the state of the counssed depth and maxDepth
Seedis the number originally generated by the seryic®vider and is used to seed the
pseudo-random number generator responsible fotimgedine counter value that is sent.
Depthis the number of times that the seeded generaterecuted to produce the next
counter. When a negeedis generatedlepthstarts at 1, and each time a connection is
successful the user and service provider increndepth by 1. MaxDepthis the
maximum value thatlepth can attain. This number changes whenever a seadis

created, and is set to the last 2 digits of thelpeveatedseed+ 1. If maxDepthdid not

27

limit the number of times thaeedis used then the authentication process would becom
prohibitively processor intensive as the user’s benof authentications increased.
Oncedepthhas reachethaxDepthboth the user and service provider are required
to independently calculate neseed depth and maxDepthvalues. The final counter
value (produced by iteratingpaxDepthtimes on aseedseeded pseudo-random number
generator) is used as the nseged Depthis reset to a value of 1, anthxDepthis set to
the final 2 digits of the neweed+ 1. Both parties use this process to createnéxt

counter value and expect the other party to dcénee.

28

Chapter 5

SeDSSO Processes

This chapter describes the operation and commumicarocesses necessary for
SeDSSO to function. The first section covers #tes processes which are responsible
for initializing secure connections as well as agdiew components. The authentication
processes are presented next and deal with botin-tats@thentication service
communication as well as user-to-service providgn-sn. Finally, the processes for

managing existing SeDSSO identities are discussed.

5.1. Setup Processes

The first process in this section describes thpsshecessary to generate a session
key and set up a secure symmetric-encryption caiomec This session key is generated
at the beginning of every communication process/éen two existing SeDSSO parties.
Additionally, this section details the processes ddding new authentication servers,

service providers, and users.

29

5.1.1. Session Key Generation

Because public/private key pairs place strict langhitations on the encrypted
payload and require far more CPU effort than symimé&eys, they are only used at the
beginning of a session. Once it has been verthatl both communicating parties know
the private key corresponding to their claimed tdgna symmetric session key is
created and used for the remainder of the commtioicaln the following protocolC is
the connecting system aRs the receiving system.

Note that in step 1, the connecting system can #smulblic key as an optional
parameter in situations where the receiving systiels not yet have this key stored.
This is necessary in some situations such as gseuat creation where the user account

does not exist.

1. C— R <nonce, [Kc] >«r

2. R— C:<nonce XOR 00...0001nonce, SK> kc

3. Cverifies that the first parameter in the above ragess its generated nonce with
the last bit flipped. If scSKis stored as the symmetric key for this session.

4, C— R <noncgXOR 00...0001> sk

5. Rverifies that the parameter in the above messaie generated nonce with the
last bit flipped.

6. R— C: <“success” xk

30

5.1.2. Adding an Authentication Server

Because this process occurs very infrequently, testighly secure and consists
of extra-network steps, it is not implemented ussmgommunication protocol. The
SeDSSO simulation is provided all of the authemitica server information before
execution. In areal SSO system the securityofsddding a new authentication server is
high enough to warrant an addition consisting ofclesively extra-network
communication. When the new authentication sendentity is established, it is
necessary to synchronize the server’'s data witll#te stored by the other authentication
servers.

The authentication server parameters are as fallodM® is the authentication
server ID,K,4 is the authentication server’s individual publeykks is the authentication
server’s individual private keyPa is the authentication server’'s receiving IP address
and P, is the authentication server’s receiving port. aadition, the authentication
service has a single public ké&xs and a corresponding private kkyas No server has
possession of the entire service private key, hohgossesses a distinct partial private
key koas Whent distinctk,askeys are used to credtencryptions of the same message,

the encryptions can be combined to form one messaggpted with the private kdys

5.1.3. Adding a Service Provider
The service provider uses extra-network commurooato add itself to a single
authentication servek.. Ac then uses the following protocol to add the seryiczvider

to every other authentication server.

31

The service provider data is referred to as folto®D is the service provider ID,
Ksis the service provider’'s public kelRsis the service provider’s receiving IP address,

andPs s the service provider’s receiving port.

1. A. establishes a secure session key connection with eathentication
serverdi;... An.

2. Ac— A Ay “ADD_SP”, 1, <SID, Kg, IPs, Ps> sk

3. A;...A,: add this service provider to the service proviitabase

4. A;...An— Ac: “ADD_SP”, 2, < “success” or “failure” 3¢

5.1.4. Adding a User

User data collection and generation takes placéhéninitialization functions
when the user software is executed. This inputisggmerates all data necessary to begin
the user addition process.

The user data is referred to as followstD is the unique user IRJP is a hash of
the username and password combinédyky is the user's public/private key
combination, andNV is the account invalidation code.

The addition process begins after data collectias taken place on the user’s
computer. The user enters the username and passWi is calculated by hashing the
username antJP is calculated by hashing the username and passveontbination. A
secure pseudorandom number and computing envirdnaea is used to seed the

generator foKy, ky andINV.

32

1. User U establishes a secure session key connection withtndom available
authentication serveA. U sends its newly-created public key as the optional
argument.

2. U— A “CREATE_USER?”, 1, UID, UP, Ky, hash(NV) > sk

3. A verifies that thaJID is not already claimed by another user accountsoJA
returns a failure and ends this process. If Aapntinues.

4. A establishes a secure session key connection Witlhalr authentication servers
A;...An. Each connection uses an independ&at

5. A— A A, “ADD_USER?, 1, <UID, UP, Ky, hash{NV) > sk

6. Ai...A,decrypt and analyze the message and return ahe ébllowing messages
to A.

a. If the message cannot be decrypted or data is improper format, send:
“ADD_USER?", 2, < “general_failure” ».

b. If the UID has already been taken, send: “ADD_USER”, 2, <
“uid_failure” > sk

c. If the data passes validation, save the user datatemporary variable
(without yet adding the user) and send: “ADD_USER”< “success” >
sk tOA.

7. Areceives messages frol... A, and tallies their responses.

a. If Areceived or more “success” messages and no “uid_failureSsages,
add the user and send: “ADD_USER?”, 3jadd” > s to Ay...An.
b. If A received less thah“success” messages or 1 or more “uid_failure”

messages, send: “ADD_USER?”, 3discard” >gx.

33

8. A;...A, receive the “ADD_USER”, 3 message frgdmand either add the user or

discard the user’s information without adding.

9. Asends a messagelUiodescribing the results of the user creation pmces

a.

If Areceived or more “success” messages and no “uid_failureSsages,
send: “CREATE_USER?”, 2, &success”UID > sk

If one or more “uid_failure” messages are receitreduser account is not
created. Send: “CREATE_USER?”, 2;'wid_failure”, UID > g.

If A received less than“success” messages after a specified time limit,

send: “CREATE_USER?”, 2, general_failure” UID > gk

10.U receives the message fréxwand reports the status to the user accordingly.

a.

If U received “success”, report that the user accoastiteen successfully
created and is ready for use. The client softwtreesUID, Ky andky on
the USBID for use in future logins. The invalidaticodelNV is stored
on the hard drive, not the USBID, for reasons the¢ discussed in
invalidation protocol section 5.3.1.

If U received “uid_failure”, report that the desiredeusame is not
available and the user should choose a new name.

If U received “general_failure”, report that the autieation system is not

available at this time and the user should tryragser.

5.2. Authentication Processes

The processes for user authentication are defimélis section. Authentication

requires the user to communicate with the authatibic service to obtain an identity

34

voucher. This voucher must contain a fresh nohee the service provider sent to the
user and must be signed with the authenticationicgeprivate key. Every authentication

process between a user and service provider @hi¢isis voucher.

5.2.1. User Authentication Voucher Generation

Before a user can access a service provider, g&t must receive a message
signed by the authentication system that vouchestHeir identity. This message
contains the user ID and service provider ID, teermame/password hash, and a nonce

created by the service provider to eliminate thespmlity of replay attacks.

1. User U establishes a secure session key connection wiindom available
authentication servex.

2. U—- A “AUTHENTICATE_USER?”, 1, <UID, UP, nonce> sk.

3. Arandomly selects a sAuthSetof t-1 authentications servers which it intends to
contact. A adds both itself and these servers to &eettactedSet

4. A creates 2 response sets, one to collect the sfictesithentication responses
and the other to collect the failed authenticatesponses.

5. A establishes a secure session key connection with @athentication server in
the AuthSet Each connection uses an independ@t

6. A — 0OAOAuthSet “AUTHENTICATION_CHECK”, 1, <UID, UP, nonce>

SK-

7. A examines the information it received frdin

35

If the UID exists and th&P corresponds to thidID, addA’s response to
the success set.
If the UID does not exist or thdP does not correspond to tHiHD, add

A’s response to the failure set.

8. The servers irAuthSetdecrypt and analyze the message and return otleeof

following messages tA.

a.

If there is an error decrypting the message,UHe is not found, or the
UP for this UID is incorrect, send a failure message:
“AUTHENTICATION_CHECK”, 2, < “failure” > .

If the UID exists and thdJP corresponds to this ID, send a success

message: “AUTHENTICATION_CHECK?”, 2, < ¥ID, NOnce> jpas> sk

9. Areceives all responses from thethSetervers and adds each to the appropriate

response set.

10. If any responses are present in the failure set:

a. A randomly selects an authentication server whichas present in

ContactedSetIt adds this random server@ontactedSet

A sends the message from step 6 to the random se&xamines the
received response, and adds the response to tleessuor failure set
accordingly.

Step 10 is repeated untisuccesses have been counted, time runs out, or

there are no more authentication servers to cantact

11. WhenA has receivetlsuccessful responsestotal responses, or has timed out, it

performs one of the two actions:

36

a. If t or more authentication servers responded with acessful
authentication messageA threshold combinest of the partial
authentication messages into one message and genésllowing toU:
‘“AUTHENTICATE_USER?”, 2, < “success”, ¥ID, nonce> yas> sk

b. If less thant authentication servers responded with a successful
authentication = message, A sends the following to U:

“AUTHENTICATE_USER?”, 2, < “failure” >

5.2.2. Initial User Sign-on to a Service Provider

The sign-on procedure describes the steps necefssasySeDSSO user with an
existing account to gain access to a service peovid he following process describes a
user’s first access to a service provider.

1. UserU wants to access a service provi8dor the first time. The client software
provides an interface folJ to contactS enter the account username and
password, and begin the authentication process.

2. U establishes a secure session key connectionSwith

3. U— S “USER_SIGN_ON”, 1, UID > s«

4. S— U: “USER_SIGN_ON?”, 2, <nonce > sx.

5. U performs the authentication message request proedfiom section 5.2.1)
usingUID andnonce.

a. If the authentication is successfll,receives the message < “success”, <

UID, nonce > kas> sk and continues the sign-on procedure.

37

b.

If the authentication is not successful receives the message < “failure”
> gk, aborts the sign-on procedure and instrigt® do the same by

sending “USER_SIGN_ON?”, 3, < “failure” a«.

6. U— S “USER_SIGN_ON", 3, < “success”,”dID, nonce > kas> sk

7. S decrypts the message with its session key and thigh the public

authentication system kéas

a.

If the message cannot be decrypted)ID is incorrect, ifnonce does not
match the nonce originally generated$yr if the user has signed onSo
previously then the sign-on toS is denied and S sends
“USER_SIGN_ON?", 4, < “failure” >k to U.

If the UID correctly matches), if nonce is equal to the nonce generated
by Sin step 2, and itJ has never signed on & then the authentication

procedure continues.

8. Sgenerates a pseudo-random long nursbersto use as a common seed for the

counter values whed signs on t&&. Sstoresseeds as well as an integelepths

(initialized to 1), which tracks the number of répens necessary to generate the

next counter value. S also calculates the maximum deptiax_deptbs by

observing the two least significant e#eds and settingnax_deptbs to a number

consisting of these two digits plus 1.

9. S— U: “USER_SIGN_ON?", 4, < “success’seeds > sk. S grants an access

session tadJ.

10.U storesseeds, initializes its own storedepths to 1, setamax_depths to the

two least significant digits iseeds + 1,and associates these values @tio use

38

for subsequent sign-on attempts. The user is mawtgd a session to the service

provider.

5.2.3. Subsequent User Sign-on to a Service Provider

The following procedure is performed when a ustmapts to sign on to a service
provider that they have already successfully loggedn the past. Thseeds, depth)s
and max_deptbs fields are stored by botbh and S and must remain synchronized for
successful authorization.

1. UserU wants to access a service provi8e¢hat it has accessed before. The client
software provides an interface for the user to sbd§ enter their account
username and password, and begin the authentiqaticess.

2. U establishes a secure session key connectionSwith

3. U— S “USER_SIGN_ON”, 1, UID > s«

4. S— U: “USER_SIGN_ON?”, 2, <nonce > sx.

5. U performs the authentication message request proedfiom section 5.2.1)
usingUID andnonce.

a. If the authentication is successfll,receives the message < “success”, <
UID, nonce > kas> and continues the sign-on procedure.

b. If the authentication is not successfulreceives the message < “failure”
> gk, aborts the sign-on procedure and instrusttdo do the same by

sending “USER_SIGN_ON?”, 3, < “failure” a«.

39

6. U generates the next counter value to send by vetgdhe storegseeds value,

using it to seed a new generator, iterating thrahghgeneratodepth;s times and

saving that generated numbercasinte(;s.

7. U— S “USER_SIGN_ON”, 3, < “success”, dID, noncg > kas counteps > sk.

8. S decrypts the message with its session key and thih the public

authentication system kéas

a.

If the message cannot be decrypted)ID is incorrect, ifnonce does not
match the nonce originally generated®yor if the user has never signed
on to S before, then the sign-on t& is denied andS sends
“USER_SIGN_ON?", 4, < “failure” >k to U.

If the UID correctly matches), if nonce is equal to the nonce generated
by Sin step 2, and iU has signed on t8 before, then the authentication

procedure continues.

9. Suses the same process thatsed in step 6 to calculateunte(s.

a.

If the counter generated b$ matches the counter sent hy send
“USER_SIGN_ON?”, 4, < “success” s to U. Sgrants an access session
to U and incrementdepths by 1.

If the counter generated [8/does not match the counter sentlhysend
“USER_SIGN_ON?”, 4, < “failure” >k to U. Sdoes not grant accessUo

and does not incremedepthys.

10.U receives the message fr@and decrypts the contents with the session key.

a.

If the message is “success),incrementdepthys by 1. The user is now

granted a session to the service provider.

40

b. If the message is “failure”, the client softwarg@ags an authorization
error to the user. Thaepth)sis not incremented.

When max_depths successful logins have been performe@pth)s equals
max_depths and bothU and S must generate neweed@s, depth;s and max_deptbs
values. This is done by using the last used cowdkie as the neweeds, setting
depthys back to 1, and calculating a nemax_deptbs by creating a number from the last
2 digits ofsee@s and adding 1.U andS perform this counter update without indicating

in a message that the change is being performed.

5.3. Identity Management Processes
Identity management involves modifying an existi8BggDSSO account on the
authentication service. The following protocobalk a user account to be invalidated, so

that any subsequent attempts to sign on are unssfate

5.3.1. User Account Invalidation

The user's system generates an invalidation numiden a user account is
created. The secure hash of this value is diggtto each authentication server for
storage, and the actual value is stored on thésusgstem (not the USBID). Access to
the invalidation code is the only information nesay to invalidate the account because
a thief may change the password and user informatiomediately after theft. In the
event of a USBID theft, a computer system possgdsie invalidation file can prevent

the stolen account from being used.

41

1. User U begins the invalidation process by initiating ildation in the client
software. If the software can locate the file eamihg the invalidation number
INV then the process continues.

2. U—->A;... Ay “INVALIDATE_USER”, 1, UID, INV.

3. Each authentication server hashes the recéiNeéd/alue.

a. If the calculated hash is equivalent to the stdmedh(NV) for U, the
authentication server removes the user’'s accowm fthe system and
sends “INVALIDATE_USER?”, 2, “success” t0.

b. If the calculated hash is not equivalent to theestdhashiNV) for U, the
authentication server does not remove the usecsuamt from the system
and sends “INVALIDATE_USER?”, 2, “failure” tdJ.

4. U’s client software tallies the responses receivethfall authentication servers.

a. If more thann —t invalidation attempts succeeded, user authentitasio
no longer possible and a successful invalidatioeperted.

b. If n —t or fewer invalidation attempts succeeded, usehneatication is

still possible and a failed invalidation is repakte

42

Chapter 6

SeDSSO I mplementation and Results

A project simulating the operation of each SeDSB@ponent has been created
to test the performance and correct operationwbiking SeDSSO system. The project
is programmed in Java and compiled with the Jav® pEtform. Java security libraries
are used for public-key and symmetric-key encryptidava network libraries are used
for communication between components, and the Tl&igslibrary [27] created by
Stephen Weis is used for threshold cryptography.

The certificate authority (CA) server, authentioatserver, service provider, and
user are implemented as separate classes withiprtiggam and each is executed on a
different virtual machine. SeDSSO processes dasgrithe communication between
these components have been implemented in the aiolproject according to the
specifications in chapter 5. Routines were deedoi test performance by measuring
the operation time of selected processes and testatness by verifying the output

against expected results. This chapter discubseddta collected from these tests.

43

6.1. Certificate Authority Server Program
The certificate authority (CA) server program iplemented as a set of 4 major
Java classes.
1. RootCA java:

» initializes itself as a working instance of a dertite authority server

= generates the public key for the authenticationmiser and a set of partial
keys to distribute to individual authenticationvses

» instantiates a RootCAReceiver object that waits moessages from
SeDSSO authentication servers

2. RootCAReceiver.java:

» binds to a specific port on the authentication sesviP address, receiving
initial incoming messages and creating new RootQO#@gtion objects to
handle the connections

3. RootCAConnection.java:

* manages a connection with another component frartst finish

= sends and receives messages to and from the otimgooent

= uses a RootCAProtocol object to track the statth@fconnection, process
incoming messages, and create outgoing messages

4. RootCAProtocol.java:

= contains code to distribute the public and pargiathentication service
keys to authentication servers

= stores the current process and step number, args®s an incoming

message only if it is the expected message

44

= creates messages and sends them to the conneBt8&Seomponent

The CA server program generates the threshold kegsssary for the distributed
authentication service. RSA-based threshold cgragghy is implemented using
ThreshSig, a Java implementation of Shoup’s thidskmnature scheme created by
Stephen Weis. The CA server uses a ThreshSig Dehject to create a 512-bit RSA
public/private key pair and split the private keyo a set of partial keys. Once the keys
have been created, the CA server accepts conngdtiom authentication servers and
distributes these keys.

While this over-the-network distribution of the pak keys conflicts with the
manual distribution described in the SeDSSO prdidbe simulation operates this way
for ease of setup and testing. In a real thresbigidtography system, a root CA would

not be accessible by other systems.

6.2. Authentication Server Program
The authentication server program is implementedaaset of 4 major Java
classes.
1. AuthServer.java:
» initializes itself as a working instance of an aurtication server
= stores all the information that an authenticatierver must retain about
itself, other authentication servers, service piexs, and users
» instantiates an AuthServerReceiver object thatsavmit messages from
other SeDSSO components

2. AuthServerReceiver.java:

45

= binds to a specific port on the authentication sésviP address, receiving
initial incoming messages and creating new Auth&&wnnection
objects to handle the connections
3. AuthServerConnection.java:
= manages a connection with another component frartst finish
= sends and receives messages to and from the atimgooent
= uses an AuthServerProtocol object to track theesthtthe connection,
process incoming messages, and create outgoin@qgesss
4. AuthServerProtocol.java:
= contains all SeDSSO authentication server protocade (the
implementation of the chapter 5 processes)
= gstores the current process and step number, ardgs®s an incoming
message only if it is the expected message
= creates messages and sends them to the conneBt8&Seomponent
The authentication server implementation createsiking server instance and
using this instance to perform all authenticatierver operations. SeDSSO requires a set
of authentication servers to form an authenticasiervice, so each server class retrieves
the predefined addresses, ports, and public keyshef other servers at runtime.
Constants in the AuthServer class make it possidblehange both the total number of
authentication servers (tmevalue) and the required number of successful atittagion
servers (the value) from one execution to the next. This wesduto easily perform the

same tests using authentication services of diftesizes.

46

Each authentication server possesses a ThreshSyphidee object which
encapsulates the server’s partial key. These KagShare used to create signatures of
the user identity voucher described in sectionl5.ZhreshSig enablésignatures to be
combined into one voucher by an authenticationeserand this voucher is sent to the

user who forwards it to the service provider.

6.3. Service Provider Program
The service provider program is implemented ast @fs4 major Java classes.
1. ServiceProvider.java:
» initializes itself as a working instance of a seevprovider system
= stores all the information that a service providarst retain about itself,
authentication servers and users
= accepts command line input to begin the processreating a service
provider record on the authentication service
» instantiates a ServiceProviderReceiver objectwlats for messages from
SeDSSO users
2. ServiceProviderReceiver.java:
= binds to a specific port on the service providdPsaddress, receiving
initial incoming messages and creating new ServmaBerConnection
objects to handle the connections
3. ServiceProviderConnection.java:
* manages a connection with another component frartst finish

= sends and receives messages to and from the otimgooent

47

= uses a ServiceProviderProtocol object to trackstate of the connection,
process incoming messages, and create outgoinqgesss
4. ServiceProviderProtocol.java:
= contains all SeDSSO service provider protocol ctde implementation
of the chapter 5 processes)
= gstores the current process and step number, ardgs®s an incoming
messages only if it is the expected message
= creates messages and sends them to the conneBt8&Seomponent
The service provider implementation does not digtyaovide a service, but it
performs all functions necessary to create a serprovider identity and add it to the
authentication service. It also allows new andimmahg users to connect to the service
and performs all the steps necessary to trust a udéne counter system is fully
implemented, with the code necessary to generatewacounter value for users and
modify the counters each time a successful lodiadlace.
When the service provider receives a user idemitycher, it uses ThreshSig
code to verify that the original voucher messages waoperly signed by the

authentication service.

6.4. User Program
The user program is implemented as a set of 3miaja classes.
1. User.java:

» initializes itself as a working instance of theeali software

48

= gstores all the information that a client programsintetain about the
user/users, authentication servers and servicedaey
= accepts input to create a user account on the ratidhgon service,
retrieve the list of service providers, connecatservice provider with an
existing user account, and invalidate the userwaticon the authentication
service
2. UserConnection.java:
= manages a connection with another component frarhtst finish
= sends and receives messages to and from the atimg@ooaent
= uses a UserProtocol object to track the state efcttnnection, process
incoming messages, and create outgoing messages
3. UserProtocol.java:
= contains all SeDSSO user protocol code (the imphatien of the
chapter 5 processes)
= gstores the current process and step number, ardgs®s an incoming
message only if it is the expected message
= creates messages and sends them to the conneBt8&Se&omponent
The user program performs all actions that would imgated through the
SeDSSO client-side software. This program is resjide for beginning the user account
creation process with the authentication servi@mnce an account has been established
the program retrieves the list of service providieesn the authentication service and

allows the user to perform initial and subseque&dins to these service providers.

49

Additionally, the program enables the user to cointae authentication service and
invalidate their account.

Unlike the service provider and authentication eerprograms, the client
software does not require a connection receivemningnin the background because users
are responsible for sending the first message Inusér-related processes. The
authentication server addresses are set in th& cladtware, and a random authentication
server is chosen from this list to begin commumoeest with the authentication service.
If a server is unavailable then another serveramns attempted. This process repeats
until a working connection is established or a# #Huthentication servers are found to be
unavailable.

USBID devices have not been implemented due t@xkensive development and
monetary investment that this would require. As thime the USBID functionality is
simulated in the client software. The user’s pevieey and counter values are stored as
User class attributes instead of directly on thé&WI% and the USBID is always assumed

to be present in processes where it is required.

6.5. Implementation Tests
6.5.1. Test Specifications

SeDSSO implementation tests use high-resolutiotesygimer measurements
and command line output provided by a set of Udasscfunctions. In addition to
reporting the success or failure of a test, thepletion time of the test is measured from
the time the user program begins the process taithe it receives the final result

message for that process.

50

The three SeDSSO functions that compose the majofia working system’s
operations are used for testing. The first tesser account creation described in section
5.1.4. In an ideal situatiom authentication servers are available and the assyunt is
created successfully on every server. Howeven aseount creation should succeed
even when some authentication servers are unalai{plovided that at leastservers
are working). The user-contacted authenticatiorvesemust record the unavailable
servers and inform them of the new user when tiseseers become available. In the
event that less tharauthentication servers are working the user shiddive a message
reporting that account creation failed and no antibhation server should store the user’'s
information.

The second test is user sign-on to a service g@eovi Signing on consists of
several different processes described in secti@x 5The user contacts the service
provider and requests access, and the servicedarongturns a random nonce value. The
user then requests an identity voucher from théemtication service and sends the
nonce to be included in the voucher.t ¢ir more authentication servers are available and
if those servers can authenticate the user, a wouchessage signed with the
authentication private key is sent back to the .us@nce the service provider examines
and verifies a successful voucher, the counterevaperation is performed. If the
counter value is created successfully (for a neuntar) or verified successfully (for an
existing counter) then the service provider triisésuser and reports a successful sign on.

The final test is user invalidation with the autheation service. This process is
presented in section 5.3.1. The user program sandsvalidation message to each

authentication server individually, and the proasssuccessful if more than—t servers

51

are invalidated. In this case, less thaamuthentication servers will trust the user and
authentication is no longer possible. If any indation attempts fail, the user system will
log them and periodically attempt to invalidate @scount on these authentication

servers.

6.5.2. Test Environment

Individual components of the SeDSSO simulation vexecuted on separate Sun
Blade workstations running the Solaris 10 operasiggfem. Each workstation contains a
1 GHz Ultra SPARC Il 64-bit processor and 1024 RBM, and they all connect to the
same 100 Mbps network.

Tests were run first with 3 authentication senaamd then with 9 authentication
servers, allowing SeDSSO performance to be analgzethe size of the distributed
authentication service increases. In addition, tdsts were performed with all of the
authentication servers working and then with vagymumbers of servers working. This
enables the performance effect of unavailable serice be measured. The number of
components running simultaneously in our tests edngom a minimum of 5 (1 CA
server, 2 authentication servers, 1 user, and Viceeprovider) to a maximum of 12 (1
CA server, 9 authentication servers, 1 user arehdice provider).

The time necessary to detect an unavailable systemas in different operating
system environments. Most UNIX and Linux operatisigstems do not retry the
connection after the first failure and instead meta socket error within several
milliseconds, while Windows retries the connectiotimes with increasing wait times as

described by [18, 19]. In initial SeDSSO testsn(an Windows systems) the delay

52

averaged around 1 second per unavailable systesulting in poor performance and
skewed time measurements. Although a partial wotkad for the Windows delay was
found, the test environment was moved to the Solrstems in order to achieve more

realistic test results.

6.6. Test Results
The following test results were calculated by agarg the results of 50
individual tests. Prior to the measurements, &stetd operation was run once to make

sure that the Java virtual machine had performieaf #he necessary compilations.

6.6.1. User Account Creation

Figure 6.1 presents the time that it takes to erageDSSO user account with an
authentication service composed of 3 servers 8). The minimum number of servers
required to use the authentication system private Wwas set to 2t (= 2). When all
authentication servers are available the averageuat creation time is .6842 seconds
and with only two servers working that time deceshto .6173 seconds. If less than 2
servers are available the user program correcggrte an inability to achieve account

creation.

53

0.8

0.7
0.6
0.5

0.4

¥ Creation time (sec)

Authentication Servers Available

Figure 6.1: User account creation timesrfer 3 andt = 2.

User account creation tests were also run on &S€Dsystem witim = 9 andt =
5, and authentication service sets of 9, 7, anakiwg servers were tested. This data is
shown in figure 6.2. With all servers working theerage completion time is .7139
seconds, decreasing to .6815 seconds when onlyvérseare available and further
decreasing to .6766 seconds with only 5 serverstifuming. If any less than 5 servers

are available then an account creation error occurs

54

0.8

0.7
0.6
0.5

0.4

¥ Creation time (sec)

9 7 3

Authentication Servers Available

Figure 6.2: User account creation timesrfer9 andt = 5.

If less tham authentication servers are running then unavaitglid encountered
at two points in the account creation process. Mthe user randomly selects an initial
authentication server to contact (as describedap & of the protocol in section 5.1.4)
there is a chance that an unavailable server wilténtacted. One or more additional
random attempts will be necessary to find an aditesion server that is available. Once
a connection with a working authentication serveas hbeen established, that
authentication server will encounter the unavadakérver or servers as it attempts to
connect to all other authentication servers.

The account creation time decreases as the numbemavailable servers
increases because detecting unavailability is fasten the account creation process.
Unavailability is detected in several millisecontisit the communication between two
working systems can take several tenths of a sedalidough the multi-threaded

authentication server implementation minimizes thelay by allowing multiple

55

connections to progress simultaneously). In ithe 3 test, having only 2 available
servers results in a 9.8% decrease in accounti@netime. Then = 9 test shows a

decrease of 4.5% when only 7 servers are availalole,that time is decreased by an
additional .72% when moving to 5 available servers.

While the account creation times appear better weeer authentication servers
are working, a realistic SeDSSO authenticationiserwould need to pass the newly-
created user to the unavailable servers when tb&yme availability (this process was
not implemented in our simulation). In that cake, additional overhead would make the
total performance requirement of unavailable serverore costly than when all

authentication servers are working.

6.6.2. User Sign-On

The times measured for user sign-on tests wit3 andt = 2 are shown in figure
6.3. Three available authentication servers ymildaverage sign-on time of 1.7438
seconds. If one of the servers is disabled the tirges to 2.0891 seconds, a 19.8%

increase in sign-on time.

56

25

1.5

H Sign-on time (sec) 1

0.5

Authentication Servers Available

Figure 6.3: User sign-on times fo= 3 andt = 2.

User sign-on was also tested with= 9,t = 5, and 9, 7, and 5 authentication
servers available. This data is shown in figue 6When all servers are available the
average sign-on time is 1.8328 seconds. With @rdgrvers available the time increases
to 2.3167 seconds (a 26.4% sign-on time penalty), & servers functioning raises the

sign-on time to 2.4883 seconds (an additional 7i&ease in time).

57

¥ Sign-on time (sec)

Authentication Servers Available

Figure 6.4: User sign-on times for= 9 andt = 5.

Unlike account creation, the sign-on process dmtseed to attempt a connection with

all n authentication serversOnce the first server is contacted, that servey oelkeds to
receive signatures froml different servers in order to sign the user idgntoucher
with the authentication service private key. Thatacted authentication server chooses
the set oft-1 servers at random and attempts to create caonsctith all of them
simultaneously. The process is designed this wayminimize the load on the
authentication service and improve sign-on times.

When the entire authentication service is avaglahll of the initial random server
connections are successful and the voucher isettéatthe fastest time possible. This is
verified by the times for 3 and 9 servers availablefigure 6.3 and figure 6.4
respectively. As the number of available servexdides, the more likely it becomes that
the user needs to contact multiple authenticatienvess until it discovers a working

server. Additionally, the contacted server mayoemter connection errors with other

58

servers and thus need to attempt new connectionsollect t signatures. While
communication with a newly-contacted server consuthe same amount of processing
time as the initial connections, the new connestithegin at a delayed time and

subsequently increase the total length of the sisgjn-on process.

6.6.3. User Account Invalidation

User account invalidation is a straightforward @ss The user program contacts
each authentication server individually and preséhn¢ invalidation number. The hash
of this number must match the hash that was predeait the user account creation in
order for an authentication server to remove tle’siccount. If more tham—t servers
invalidate the user account then future authemticagttempts are impossible and

invalidation is a success. Figure 6.5 and 6.6 sth@ximes for account invalidation.

¥ Invalidation time (sec)

3 2

Authentication Servers Available

Figure 6.5: User account invalidation timesffior 3 andt = 2.

59

8 |nvalidation time (sec)

Authentication Servers Available

Figure 6.6: User account invalidation timestiier 9 andt = 5.

For the system whenmne=3 andt=2, invalidation with all 3 authentication servers
available takes .1342 seconds on average. If Brdgrvers are available, the time is
reduced to .1044 seconds. Likewise, the invalsatimes fom=9, t=5 with 9, 7, and 5
servers available are .1601 seconds, .1445 secands]1388 seconds respectively.

The user simulation performs invalidation sequdlgtiaith each authentication
server. If a server is available then the invalataprocess is executed completely, and
that server responds with either a success orréailWhen a server is unavailable, the
user considers the invalidation to have failed tftat server. The act of invalidation
requires more time than the detection of an unabksl server, resulting in data that is
similar to the measurements from user account ioreatAs the number of available
servers decreases, invalidation time decreases.

Even though user sign-on is impossible after t authentication servers have

performed invalidation, it is beneficial for useecsrity and server performance and

60

storage to invalidate the user on all authenticaservers, including those that might
have been unavailable at the time of invalidationThis requirement could be
implemented in the user software, but a more rigiabbethod would involve the
authentication service creating an invalidation wpéor unavailable servers. When a
server came back online, it would need to perfollmctions on the queue. Despite the
slightly faster invalidation times when some sesvare unavailable, the overhead of

these servers would cause more work than if alenitcation servers had been available.

6.7. Security Analysis

In the past, SSO systems have experienced vultigesbto two major security
attacks. A man-in-the-middle attack occurs whereamesdropper intercepts messages
between two parties to change them without eitlagtygknowing that such an attack has
taken place. Given the distributed flow of intdrrteaffic, it is possible for an
eavesdropper with access to a routing device tergbgaw communication messages in
any protocol. These attacks have taken place stersy with various security protocols,

including some that rely on public-key cryptography

SeDSSO is immune to man-in-the-middle attacks. orisher for a man-in-the-
middle attack to work against SeDSSO’s public-keythantication system, the
eavesdropper needs to replace the real key pairsomunterfeit key pairs and assume
that the communicating systems will still operateeg these replacements. The public
keys belonging to individual SeDSSO authenticagernvers and the public key for the
entire authentication service are widely distribyteand a root certificate authority

vouches for their authenticity. The public key fitre certificate authority can be

61

embedded directly in the USBID as well as serviceviger software so that user and

service provider systems can make sure that aratithation public key is correct.

The SeDSSO public and private keys are generated) tise RSA public-key
cryptography algorithm. Every communication sesdiegins by encrypting messages
with public keys until a secure symmetric sessiey kan be created (as described in
section 5.1.1). In order to read or modify comngations the attacker needs to know a
private key or the symmetric session key generatieding public/private key
communications. Given a secure RSA key pair (saE2048-bit size) and a secure
symmetric AES key (such as 256-bit size), the pbdita of calculating one of the keys
within a reasonable timeframe is virtually zeroheTNational Institute of Standards and
Technology (NIST) estimates that based on projectedputer system speed increases,

2048-bit RSA keys and 256-bit AES keys should rensaicure until at least 2030 [6].

Trojan horse attacks are more subversive becaesetalke direct control of the
user’s system. The Trojan program runs in the ¢waknd and waits until a connection
has been established. It then sends requeststtogertonnection to perform malicious
activities with the user’s identity. The commurtioa protocol and server architecture of
an authentication system would be unable to prett@sf no matter how secure it is.
Protection must be implemented directly in the rthgide software or hardware.
Although a simulation of SeDSSO has been programmimedfull client software is not
yet developed. Consequently, testing to gauge SE€D:STrojan attack resistance cannot

be performed at this time.

62

Several security approaches may allow SeDSSO arter otwo-factor
authentication schemes to effectively resist Tr@gtacks. Client software that makes it
impossible for a SeDSSO connection to be estallistiehout forced user interaction
could alert user to a Trojan operating in the bagkgd, but it is difficult to guarantee
that this interaction cannot be bypassed in somg waéhe new initiative known as
trusted computing may also be able to defend agtiase attacks by limiting the ability
of other programs to interact with the user’'s sessiHowever, at this time the future of
trusted computing is unclear and the potential athges and disadvantages are still

being discussed [7].

63

Chapter 7

Conclusion and Future Work

7.1. Conclusion

In this thesis we presented SeDSSO, a secureadlrghfe Internet authentication
SSO architecture. Threshold encryption and aidigigd authentication service allow
SeDSSO to eliminate authentication as a centraltpodi failure. Although the existing
single sign-on systems CorSSO and ThresPasspypmmedistributed authentication with
threshold encryption, SeDSSO improves on theirrigcand usability by implementing
a two-factor authentication scheme consisting abarname/password combination and
the USBID.

A protocol describing the interaction between S8DSusers, service providers,
and the authentication service has been develofgal simulation implements every
function of this protocol and yields consistentlgrrect operations with favorable
performance measurements. The simulation also dsetmades the advantages of
distributed authentication. Even withl authentication servers disabled (almost half of
the authentication service), all functions ard stiailable and in most cases the system

suffers only a minor performance penalty.

64

As more people use more Internet sites, they reedlay to replace many
identities with one easy-to-use highly secure grhiat can be used anywhere without
fear of identity theft. SeDSSO was designed tbliftihis need, and initial tests show the
potential of our solution. However, more work mb& done to test SeDSSO in an
environment that realistically simulates the strebmt a high-volume Internet

authentication service would need to endure.

7.2. Future Work
7.2.1. Complete Implementation

Now that the SeDSSO protocol has been developddaasimulation has been
programmed, the next step in extending this pragdhe development of a complete
realistic implementation. Each authentication serghould run on its own high-
performance system and they should be arrangedseparate authentication service
network. Threshold encryption should be implemeérde a longer RSA key, with tests
to measure and compare the performance of 1022M48-bit, and possibly larger keys.
A network-isolated CA server should be used to geerethe authentication public and
private key and corresponding partial keys.

Many test operations should be performed at ontle sign-on attempts, account
creations, and account invalidations occurring giameously. This would allow for more
realistic measurements than the ones presentelajoter 6, which were performed in
isolation.

A more realistic SeDSSO prototype requires thetoe of a physical USBID

device. This USB device must consist of a spexgdlimicrocontroller, flash memory,

65

and the architecture necessary to connect themowAevel communication protocol
between the USBID and the user's system would rneette designed. Both the
microcontroller and an operating system driver mugiement an end of this protocol to
allow communication between the client system dmdduthentication service. Once a
working driver is written, it would be possible ppogram the client software to use the
USBID as defined in chapters 4 and 5 of this thesis

A realistic implementation would make it possitileanalyze SeDSSO'’s response
to security attacks of different types. Investigatof the implementation’s response to
simple Trojan virus programs could identify potahtivulnerabilities. If any
vulnerabilities are discovered, client-side modifions could be proposed and

programmed in an attempt to secure the system.

7.2.2. Unavailable Authentication Server Detection

It may be possible to reduce unavailable authatitic server delays in the sign-
on process by creating a way to monitor the statulsese servers in real time. There are
two different methods by which this could be ackevand each has a set of potential
issues that would need to be researched and resolve

The first method for detecting unavailable serwgosild involve the addition of
new systems to the authentication service knownthas availability servers. An
availability server sends a small message to eatheatication server at a set time
interval, and a return message from each servexqired to verify availability. If an
authentication server does not respond, the avi#jakerver marks the non-responding

server as unavailable for the duration of the wrdkr

66

When a user or authentication server needs toacbmthentication servers at
random, the contacting party asks an availabiktywer for an updated availability list (or
reuses a recently-acquired list that has not edpir&Jsing this list allows the contacting
system to choose only those servers which werentlgcavailable.

While this method would allow for propagation dfetserver status list to all
authentication servers and users, the bandwidthilbposed by a large number of users
would require a set of high-performance availapilgervers possibly rivaling the
authentication servers themselves. Implementatfahis type of scheme in a SeDSSO
system would allow the true performance requireneie assessed.

The second method would move the creation ofgtiger status list from a set of
availability servers to the authentication servlremselves, with each authentication
server maintaining its own list. If one servercdigers that another server is unavailable,
the server that made the discovery adds a messaigdist indicating this unavailability.
When a random authentication server selection mesnhade, this list prevents servers
which were recently unavailable from being contdcte Consequently, unavailable
servers will be avoided in the random selectioncess (following the unavailability
discovery) and delays will be minimized for authesion servers. Servers can be
considered available again either after a specpribd of time or whenever they notify
other servers that they are back online.

This method has the advantage of not needing thei@d of high-performance
availability servers. However, in order to minimiload on the authentication servers, it
may be necessary to limit the availability dataatathentication servers themselves

instead of distributing it to every user on a regulasis. If this is the case, some of the

67

possible delay (when the user randomly selectsgialicontact authentication server)
would remain. As with the first method, implemeitta would be necessary to judge the

performance cost and benefit of this change.

68

[1]

2]

[3]

[4]

[5]

[6]

[7]

References

DigitalPersona, Inc., “Solving the Weakest LinkasBword Security,”

http://www.digitalpersona.com/resources/downloads#Wést Link wp 0205.p

df

W. Josephson, E. Sirer, and F. Schneider, “Pe@etr-Authentication with a
Distributed Single Sign-On Serviced™ Int. Workshop on Peer-to-Peer
Systems (IPTPS’04%an Diego, USA, February 2004.

T. Chen, B. Zhu, S. Li, X. Cheng, “ThresPasspdxtDistributed Single Sign-
On Service,International Conference on Intelligent Computih@IC) 2005
Hefei, China, August 2005.

A. Shamir, “How to Share a SecreEobmmunications of the ACM Vol. 22 No.
11, November 1979.

L. Zhou, F. Schneider, and R. van Renesse, “COCBegure Distributed On-
line Certification Authority,”ACM Transactions on Computer Systems 20, 4
pp. 329—368, November 2002.

NIST, “Recommendation for Key Management — Pafséneral (Revised),”
NIST Special Publication 800-5May 2006.

S. Schoen, “Trusted Computing — Promise and RElkettronic Frontier

Foundation (EFF) web site,

www.eff.org/Infrastructure/trusted computing/200810tc.pdf

69

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

RSA Security, “The % Annual RSA Security Password Management Survey,”
August 2006.

G. R. Blakley, “Safeguarding Cryptographic Key&FIPS Conference
Proceedings, vol.48. 1979 National Computer Comfeeepp. 313-317, 1979.
M. Tompa and H. Woll, “How to Share a Secret withe@ters,’Proceedings on
Advances in Cryptology -- CRYPTO,'®p. 261-265, 1986.

L. Lamport, R. Shostak, and M. Pease, “The ByzanBenerals Problem,”
ACM Transactions on Programming Languages and Bystolume 4 Issue
3, July 1982, pp. 382-401, 1982.

M. Ghosh and S. Makki, “A Secure Framework for Hiegic Payment
System,”Proceedings of the International Conference onrhrge Computing
Las Vegas, Nevada, USA, June 21-24, 2004.

P. Fouque and J. Stern, “Fully Distributed Thred®EA under Standard
Assumptions,’/ASIACRYPT 20Qpp. 310-330, 2001.

|. Damg’ard and M. Koprowski, “Practical Thresh8®8A Signatures without a
Trusted Dealer,Eurocrypt ‘01, pp. 152-165, 2001.

V. Shoup, “Practical Threshold SignatureSyrocrypt ‘0Q Vol. 1807, pp. 207-
220, 2000.

R. Rivest, A. Shamir, and L. Adleman, “A Method f@btaining Digital
Signatures and Public-Key Cryptosystentdgmmunications of the AGMp.

120-126, 1978.

70

[17] A. Pashalidis and C. Mitchell, “A Taxonomy of Siadgbign-On Systems,”
Information Security and Privacy, 8th Australas@anference, ACISP 2003
2003.

[18] Sun Developer Network, Java Bug Database, “Slowetamavailability
detection on Windows,” bug ID: 4424770,

http://bugs.sun.com/bugdatabase/view bug.do?bud4iEr’70Q March 2001.

[19] Microsoft TechNet, description of the TcpMaxDataf@asmissions registry
setting,

http://www.microsoft.com/technet/prodtechnol/windg®000serv/reskit/regentr

y/58805.mspx?mfr=tryeApril 2007.

[20] J. Tuomy, “Addressing High-Risk Remote Access Agations with Challenge
/ Response User Authenticatio,élecommunications American Edition,
March ‘95, Vol. 29, p. 58, 1995.

[21] R. Smith, “Authentication: From Passwords to Publéys,” I™* edition,
Addison-Wesley, 2002.

[22] RSA Security, RSA SecurlD product information, bftpww.rsa.com/

[23] P. Madsen, Y. Koga, and K. Takahashi, “Federatedtlthy Management for
Protecting Users from ID TheftProceedings of the 2005 Workshop on Digital
Identity Managementairfax, VA, 2005.

[24] A. Biryukov, J. Lano, B. Preneel, “Cryptanalysistioé¢ Alleged SecurlD Hash
Function,”Lecture Notes in Computer Science, proceeding&6fZ®03 2003.

[25] B. Schneier, “Two-Factor Authentication: Too Littleoo Late,”

Communications of the AGMol. 48, No. 4, April 2005.

71

[26] D. Kormann and A. Rubin, “Risks of the Passporg&&rSignon Protocol,”
IEEE Computer Networksuly 2000.
[27] ThreshSig: Java Threshold Signature Package, dregt8&tephen A. Weis,

http://threshsig.sourceforge.net/.

72

	The University of Toledo
	The University of Toledo Digital Repository
	2007

	Secure distributed single sign-on with two-factor authentication
	Kaleb Brasee
	Recommended Citation

	

