
The University of Toledo
The University of Toledo Digital Repository

Theses and Dissertations

2007

Secure distributed single sign-on with two-factor
authentication
Kaleb Brasee
The University of Toledo

Follow this and additional works at: http://utdr.utoledo.edu/theses-dissertations

This Thesis is brought to you for free and open access by The University of Toledo Digital Repository. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of The University of Toledo Digital Repository. For more information, please see the repository's About
page.

Recommended Citation
Brasee, Kaleb, "Secure distributed single sign-on with two-factor authentication" (2007). Theses and Dissertations. 1261.
http://utdr.utoledo.edu/theses-dissertations/1261

http://utdr.utoledo.edu?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/theses-dissertations?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/theses-dissertations?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/theses-dissertations/1261?utm_source=utdr.utoledo.edu%2Ftheses-dissertations%2F1261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://utdr.utoledo.edu/about.html
http://utdr.utoledo.edu/about.html

A Thesis

Entitled

Secure Distributed Single Sign-On with Two-Factor Authentication

By

Kaleb Brasee

Submitted as partial fulfillment of the requirements for

The Master of Science in Engineering

Advisor: Dr. Kami Makki

 College of Graduate Studies

The University of Toledo

December 2007

The University of Toledo

College of Engineering

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER

MY SUPERVISION BY Kaleb Brasee

ENTITLED Secure Distributed Single Sign-On with Two-Factor

Authentication

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF Master of Science in Engineering

Thesis Advisor: Dr. Kami Makki

Recommendation concurred by

 Dr. Gerald Heuring

Dr. Hilda Standley

Dean, College of Engineering

Committee

On

Final Examination

iii

An Abstract of

Secure Distributed Single Sign-On with Two-Factor Authentication

Kaleb Brasee

Submitted as partial fulfillment of the requirements for

The Master of Science in Engineering

The University of Toledo

December 2007

In this thesis we present the Secure Distributed Single Sign-On (SeDSSO) architecture.

SeDSSO provides secure fault-tolerant authentication using threshold key encryption

with a distributed authentication service. The authentication service consists of n total

authentication servers utilizing a (t, n) threshold encryption scheme, where t distinct

server-signed messages are required to generate a message signed by the service.

Existing distributed SSO schemes such as CorSSO and ThresPassport are examined and

the benefits of our system over these schemes are presented. SeDSSO establishes secure

portable identities by defining a two-factor authentication scheme that uses both a

username/password and a unique USB device. The combination of a distributed

authentication service and two-factor identities allows SeDSSO to securely authenticate

users in any environment.

iv

Table of Contents

Abstract …..……………………………………………………………………….. iii

Table of Contents …………………………………………………………………. iv

List of Figures ……………………………………………………………………... vi

1. Introduction …………………………………………………………………….. 1

1.1. Motivation ……………………………………………………………. 1
 1.2. Thesis Organization …………………………………………………... 2

2. Related Work …………………………………………………………………… 4

2.1. Two-factor Authentication …………………………………………… 4
 2.1.1. Overview …………………………………………………… 4
 2.1.2. Two-Factor Authentication Example ………………………. 6
 2.1.3. Advantages and Disadvantages …………………………….. 7
2.2. Threshold Cryptography ……………………………………………… 8
2.3. CorSSO ……………………………………………………………….. 10
 2.3.1. CorSSO Identity Setup Protocols ………………………….. 11
 2.3.2. CorSSO Client Authentication Protocol …………………… 11
 2.3.3. CorSSO Client-to-Application Server Access Protocol …… 12
 2.3.4. CorSSO Disadvantages …………………………………….. 12
2.4. ThresPassport ………………………………………………………… 12
 2.4.1. ThresPassport Identity Setup Protocols ……………………. 13
 2.4.2. ThresPassport User Authentication Protocol ………………. 14
 2.4.3. ThresPassport Single Sign-On Protocol ……………………. 14
 2.4.4. ThresPassport Disadvantages ………………………………. 15
2.5. Distributed Certification and COCA …………………………………. 16

3. SeDSSO Components …………………………………………………………. 19

3.1. Authentication Service ………………………………………………. 20
3.2. Service Providers ……………………………………………………. 21
3.3. Users ………………………………………………………………… 22

4. SeDSSO User Identity System ………………………………………………… 24

4.1. USB Identity Device (USBID) ……………………………………… 24
4.2. Counter System ……………………………………………………… 26
4.3. Counter Value Operation ……………………………………………. 27

5. SeDSSO Processes …………………………………………………………….. 29

5.1. Setup processes ……………………………………………………… 29
 5.1.1. Session Key Generation …………………………………… 30
 5.1.2. Adding an Authentication Server …………………………. 31

v

 5.1.3. Adding a Service Provider ………………………………… 31
 5.1.4. Adding a User ……………………………………………… 32
5.2. Authentication processes ……………………………………………. 34
 5.2.1. User Authentication Voucher Generation ………………… 35
 5.2.2. Initial User Sign-on to a Service Provider ………………… 37
 5.2.3. Subsequent User Sign-on to a Service Provider …………… 39
5.3. Identity management processes ……………………………………… 41
 5.3.1. User Account Invalidation …………………………………. 41

6. SeDSSO Implementation and Results …………………………………………. 43
 6.1. Certificate Authority Server Program ….……………………………. 44

6.2. Authentication Server Program ……………………………………… 45
6.3. Service Provider Program …………………………………………… 47
6.4. User Program ………………………………………………………… 48
6.5. Implementation Tests ………………………………………………... 50
 6.5.1. Test Specifications ………………………………………… 50
 6.5.2. Test Environment ………………………………………….. 52
6.6. Test Results ………………………………………………………….. 53
 6.6.1. User Account Creation ……………………………………. 53
 6.6.2. User Sign-on ………………………………………………. 56
 6.6.3. User Account Invalidation ………………………………… 59
6.7. Security Analysis ……………………………………………………. 61

7. Conclusion and Future Work ………………………………………………….. 64
 7.1. Conclusion …………………………………………………………… 64

7.2. Future Work …………………………………………………………. 65
7.2.1. Complete Implementation ………………………………… 65
7.2.2. Unavailable Authentication Server Detection ……………. 66

References ………………………………………………………………………… 69

vi

List of Figures

Figure 2.1: Standard encryption compared to threshold encryption ……….......... 9

Figure 3.1: SeDSSO components ……………………………………………….. 20

Figure 4.1: USBID architecture …………………………………………………. 25

Figure 6.1: User account creation times for n = 3 and t = 2 …………………….. 54

Figure 6.2: User account creation times for n = 9 and t = 5 …………………….. 55

Figure 6.3: User sign-on times for n = 3 and t = 2 ……………………………… 57

Figure 6.4: User sign-on times for n = 9 and t = 5 ……………………………… 58

Figure 6.5: User account invalidation times for n = 3 and t = 2 ………………… 59

Figure 6.6: User account invalidation times for n = 9 and t = 5 ………………… 60

1

Chapter 1

Introduction

1.1. Motivation

As the number of personal Internet-site accounts grows, organizing and

remembering confidential identity information becomes more difficult for the individual.

It is often impossible to use the same information on every site. Common usernames

may already be taken and sites frequently impose unique requirements for passwords

(e.g., the password must consist of both lowercase and uppercase letters or it must

contain a digit). In an RSA Security survey, more than 30% of users reported needing

between 6 to 12 different passwords for their business-related logins and almost 25% said

that they needed to remember 13 or more passwords [8]. When people cannot remember

all of their information and are forced to physically record it, the secrecy of their identity

is jeopardized.

Single sign-on (SSO) allows users to verify their identity on a central system and

gain access to many different resources that trust the central system. The act of proving

an identity is known as authentication. A widely-used Internet SSO system could help

people protect their identity secrets by replacing many site-specific logins with a single

2

SSO login. This would make it possible for the average user to choose secure identity

information and remember it without writing it down. Correspondingly, this system

would reduce the need for insecure transmission of logins through email when users

forget their information.

Various SSO architectures have been proposed and implemented over the past

decade, but none have been used significantly on large-scale public Internet domains.

Microsoft Passport is one of the most well-known attempts at widespread SSO. Many

web sites initially planned to trust Passport identities that belonged to their users.

However, after numerous difficulties and vulnerabilities, Passport support was abandoned

by every site except those belonging to Microsoft [26].

The motivation for this thesis is the design of a SSO system that offers

improvements over existing SSO schemes. Because many users and sites will rely on the

SSO central authentication system, it needs to offer fail-safe authentication that remains

available and secure through partial hardware and software failures. A robust system

must also provide a way for users to safely sign on from any location, including

potentially insecure computers found in places such as Internet cafés and public libraries.

Our system is called SeDSSO (Secure Distributed Single Sign-On) and it provides SSO

services with a fail-safe distributed authentication system and secure two-factor

authentication user identities.

1.2. Thesis Organization

This thesis consists of seven chapters. Chapter 1 introduces our motivation for

designing SeDSSO. Chapter 2 presents an overview of the following related work topics:

3

two-factor authentication, threshold cryptography, existing distributed SSO systems, and

distributed certification. Chapter 3 covers the basic components that make up a complete

SeDSSO system. Chapter 4 details SeDSSO user identities, including the two-factor

authentication scheme and the USB device used for securely transporting identities.

Chapter 5 fully describes the processes executed by SeDSSO components. Chapter 6

discusses our SeDSSO prototype and the results of performed tests. Chapter 7 presents

our conclusions and suggested future work.

4

Chapter 2

Related Work

 This chapter begins with an overview of two-factor authentication. Next, a

summary of threshold cryptography is presented. The chapter then discusses CorSSO

and ThresPassport, two existing distributed SSO schemes. A distributed SSO system

provides single sign-on to users and allocates the responsibility of authenticating these

users to a network of individual authentication servers.

Finally, the topic of certification is presented. A certificate binds information

about an entity to that entity’s public key and includes the signature of a trusted authority

to vouch for the authenticity of the information contained on the certificate. An existing

distributed certification authority scheme known as COCA (Cornell Online Certification

Authority) is examined.

2.1. Two-Factor Authentication

2.1.1. Overview

 The username and password system was introduced in the early 1960s as the need

emerged to secure identities on timesharing systems [21]. Computing has changed

5

dramatically since that time, expanding from government and research to business and

personal use. However, username/password pairs have remained the standard proof of

identity ownership. This method is now the weakest link in modern computer security.

The Carnegie Mellon Computer Emergency Response Team (CERT) reports that 80% of

all security breaches it examines are related to passwords [1]. Identities can be stolen

through technological means such as keystroke logging and phishing schemes. They can

also be stolen through social engineering methods ranging from the complex (posing as

an administrative authority and coercing the user) to the simple (viewing a handwritten

username/password lying on a desk).

In light of these weaknesses, systems have been developed which require

additional identity proof. Identity proof mechanisms are divided into general categories

known as the identity factors. A two-factor authentication system requires that valid

credentials from two different factors be presented before a user is trusted. Many

different methods can be used to prove an identity, but most fall into one of the following

factors:

1. “Something you know” – memorized information (e.g., a password or answer to a

secret question).

2. “Something you have” – possession of a unique item containing secret

information (e.g., a smart card, bar code, or USB-interface device).

3. “Something you are” – a physical trait that can be converted to digital

information using specialized hardware (e.g., a retina or fingerprint scan or voice

recording analysis).

6

On the Internet the username/password is a generally-assumed first factor

belonging to the “something you know” category. Two-factor authentication system

designers must choose a second factor and decide how to implement it. The second

factor is often a physical device that stores a key, generates passwords, or responds to

challenges from the authentication server.

2.1.2. Two-Factor Authentication Example

An example of an existing two-factor authentication system is RSA’s SecurID.

SecurID identifies users with a two-factor authentication system consisting of a personal

identification number (PIN) and numeric password that users know, and a device that

users have [22]. This device (known as the token) features a processor and memory with

a small numeric display, and it is configurable for individual users. It generates a six-

digit code every minute and constantly displays the code. In order to login, a user must

enter both their PIN and a concatenation of the numeric password with the current token.

Authentication is successful if the PIN exists, the numeric password for that PIN is

correct, and the six-digit token code matches the code expected by the server. Since the

SecurID token codes are time-dependent, the server and the token must be initially

synchronized and maintain the same time values in order for the codes to match.

SecurID is widely used and it significantly complicates identity theft.

Authentication is not possible without both knowledge of the PIN/password and

possession of the token. However, under the right circumstances it is possible to

intercept communications within this system (as well as other systems using time or

usage-dependent information such as one-time passwords) and perform a man-in-the-

7

middle attack to hijack the user’s authentication request [23]. Methods to recover the

secret token key have also been discussed [24]. Still, the system is far more secure than

one-factor authentication, with no successful attacks reported in SecurID’s 15-year

lifecycle [22].

2.1.3. Advantages and Disadvantages

The most obvious advantage of two-factor authentication is the increased

difficulty for a malicious party to acquire both authentication factors. Standalone

keystroke-logging attacks are usually insufficient because the captured data is not enough

to gain authentication, will not work for subsequent logins, or will only work for a very

short time. Additionally, if a malicious user just obtains a token-generating device it is

useless because the login information is not known. The difficulty of obtaining both

factors is why two-factor authentication is often referred to as strong authentication.

Even though two-factor authentication makes electronic identity theft more

difficult, it is not perfect. In systems using time-based passwords there is a small window

of opportunity in which a real-time attack can occur [20]. In SecurID the window of

opportunity is at most 60 seconds but an attack could theoretically take place in this time

frame (although as RSA stated, such an attack has yet to be reported). A challenge and

response two-factor system eliminates this threat because each new session requires a

response to a different random challenge.

On a more basic level, the argument has been made that two-factor authentication

is inadequate to protect users against identity theft and phishing and that it “doesn’t solve

anything” [25]. Man-in-the-middle attacks allow a web site to pose as the service

8

provider’s site to the user, while actually passing communications back and forth

between the user and service provider. Once the man-in-the-middle system has captured

the necessary information from this real connection, it can perform any action as the user

with that service provider.

Trojan attacks work by installing inconspicuous software directly on the computer

that the user is operating. Once this software detects that a secure connection has been

established, the Trojan software uses this connection to perform its own malicious

activities in the background.

Many previous two-factor authentication schemes have been vulnerable to one or

both of these attacks. Section 6.7 of this thesis discusses how our system operates in

regards to these risks.

2.2. Threshold Cryptography

 Shamir and Blakley independently proposed the threshold scheme in 1979 [4, 9].

As the title of Shamir’s paper (“How to Share a Secret”) indicates, a threshold scheme is

used to safely share a secret between distinct parties so that no individual party possesses

the secret. A threshold scheme divides the secret data into n data pieces and performs the

division so that t data pieces, t ≤ n, are required to recreate the secret data. Each data

piece is unrelated to all of the other pieces and acquiring less than t provides no

information about the original data. Such a scheme is known as a (t, n) threshold scheme.

 In cryptography, threshold schemes can be used to divide a private key into a

number of partial keys. Partial keys can be used to encrypt and decrypt a message like a

full key. When a message is encrypted with t different partial keys, the resulting t

9

messages can be combined into one encrypted message that is identical to the message

encrypted with the private key. This act of combining partially signed messages can be

done without knowledge of any of the keys. If a private key is split using a (t, n)

threshold scheme then n servers will possess a partial key and it will take the signature of

t servers to create a message signed with the private key. Therefore, an attacker will need

to make t successful intrusions on different authentication servers to gain control of the

authentication service private key.

Figure 2.1: Encrypting a message with t partial keys and combining the partially encrypted
messages produces the same output as a simple encryption with ks. However, with threshold

encryption no party is required to possess the entire private key.

 When choosing the numbers t and n, n is simply the total number of servers

available. This number can be changed without affecting any of the partial keys or the

original key, so long as n remains greater than t. The number t cannot be modified

without changing either the partial keys or the original key. Shamir suggested the

formula n = 2t – 1 as a robust way for determining the total number of partial keys and

10

the number required to perform threshold operations [4]. When this formula is applied to

a group of authentication servers, authentication is still possible even if n / 2 (or t – 1)

servers are inaccessible. Similarly, an attacker can steal up to n / 2 (or t – 1) partial

keys without learning the group’s private key.

Modifications to the original Shamir threshold scheme were proposed in [10].

These modifications fix a vulnerability that allows a malicious user to cheat other parties

in the system and acquire the partial keys necessary to reconstruct a full key. More

current schemes for threshold signatures using the RSA encryption algorithm [16] have

been proposed; a popular design is Shoup’s scheme [15]. Additionally, numerous papers

have been written that discuss the application of threshold cryptography in distributed

system operations [13, 14].

2.3. CorSSO

Two distributed threshold SSO systems have recently been proposed. The first

system to be created was CorSSO (Cornell Single Sign-on), a SSO system that provides

distributed peer-to-peer network authentication [2]. This design moves authentication

services that are commonly provided by application servers (or service providers) onto a

set of dedicated authentication servers. A threshold scheme is used to split an

authentication system’s private key into a set of partial keys, so that user authentication

requires the work of several authentication servers instead of one. In addition to allowing

users to create one identity and use it on all of the application servers, this system

improves scalability, distributes trust, and provides fault tolerance in the authentication

process.

11

2.3.1. CorSSO Identity Setup Protocols

 CorSSO defines a client/user as a principal C that creates both a public key KC

and private key kC for itself. Likewise, an application server S creates its private key kS

and public key KS. S becomes accessible to principals by registering its information with

a set Ni of authentication servers (known as a sub-policy set). The authentication servers

in Ni create a private key ki and public key Ki for this particular set of authentication

servers. Ki is sent to S for decrypting authentication system messages in the client

authentication process. ki is split using threshold encryption and a unique partial key is

given to each authentication server. No authentication server stores the full ki.

2.3.2. CorSSO Client Authentication Protocol

To access an application server, a client must first successfully authenticate with t

authentication servers in the application server’s namespace set. The client C requests an

authentication policy (a set of chosen authentication servers) from application server S

and S responds by sending back a policy set P with which C must authenticate. C selects

a sub-policy set Ni with which it has registered, containing only elements that are also in

the set P. C requests a certificate vouching for its identity from each authentication

server. If C’s identity verification is successful then each authentication server creates

the same certificate and signs it with a different partial key of ki. The authentication

servers send these partially signed certificates back to C. When C has received t partial

certificates from the authentication servers in Ni, it uses threshold cryptography to

combine them into a single certificate signed with the private key ki.

12

2.3.3. CorSSO Client-to-Application Server Access Protocol

When C has generated the certificate signed with ki it contacts S again and

requests an authentication challenge. This challenge is a pseudo-random generated

message that S encrypts with its private key kS and sends to C. C uses KS to decrypt the

message, encrypts the same message with its private key kC and sends both the encrypted

message and the certificate signed with ki back to S. S grants C access to its services only

if it can verify that the challenge message was signed with C’s private key and that the

authentication servers have vouched for C’s identity.

2.3.4. CorSSO Disadvantages

CorSSO lacks a mechanism for transferring a user’s private key so that the user

can gain authentication on different computers. Copying this key without protection

would allow anyone who steals the key to steal the identity of the user. CorSSO’s use of

the private key to identify users is similar to identification in the Kerberos authentication

system which has been noted for its mobility limitations and lack of security in untrusted

environments [17].

2.4. ThresPassport

ThresPassport is a distributed SSO system that uses threshold-based key sharing

to split a service provider’s secret key into a set of partial keys [3]. It was developed to

address some shortcomings of the existing CorSSO system. In order for a service

provider to trust a user’s identity, a set of authentication servers must be able to construct

a voucher message for the user that is signed with the secret key. In contrast to CorSSO,

13

ThresPassport does not rely on a trusted authority to operate a public key infrastructure

(PKI) for its service providers, clients, and authentication servers. ThresPassport also

replaces CorSSO’s randomly generated private and public client keys with one-way hash1

keys that can be generated using only a username and password.

2.4.1. ThresPassport Identity Setup Protocols

The ThresPassport protocol begins by establishing the identity of service

providers and users with a set of n authentication servers. A service provider S acquires a

unique identifier number SID. It then creates a secret key KS and calculates the inverse

key KS
-1 such that KS

-1 = (1 mod (p – 1)) / KS, where p is a randomly generated prime

number. A (t, n) scheme is used to split KS into n partial keys, where signatures from t of

these partial keys are required to act as the entire key KS. S then sends its unique

identifier SID along with partial keys K1
S through Kn

S to authentication servers A1 to An

respectively, with each server receiving a different partial key. Each authentication

server stores the partial key and SID and sends a success message to S.

Users are identified by a unique UID created by hashing their username, and a

password is associated with the UID. For each authentication server, the username,

password and authentication server identifier Ai are combined into strings and a one-way

hash is executed on this combination to create a key (denoted Ki
U). This process is

performed for each server to create keys K1
U through Kn

U. U sends the UID and correct

1 A hash function, also known as a one-way hash, creates a reproducible signature or fingerprint of some
input data. The function operates in such a way that it is very unlikely to generate the same signature
output from different input data. It is trivial to calculate a hash, but practically impossible to calculate the
original data from the hash (hence the term one-way).

14

Ki
U to each authentication server. Upon successful storage of these values, the servers

return a success response to U.

2.4.2. ThresPassport User Authentication Session Protocol

User authentication with a single authentication server is a straightforward

process. The client software uses the entered username/password and the authentication

server identifier to generate UID and Ki
U. User U then requests authentication from

authentication server A. A generates a nonce nA and sends it to U. U generates its own

nonce nU as well as a random number rU and encrypts the message < rU, nU, nA > with the

key Ki
U. U sends both the UID and this encrypted message to A. If A can decrypt this

message correctly using the key stored for UID and can verify that U received and

decrypted the nonce nA, then A generates its own random number rA and sends the

message < rA, nA, nU > encrypted with Ki
U to U. Now that both A and U have the

numbers rA and rU, they each create a temporary session key SKU,A by hashing a

combination of rA and rU. This session key is used until the session is ended manually or

expires.

This process is not executed in isolation, but occurs between the user and each

authentication server as a part of the single sign-on protocol described in the next section.

2.4.3. ThresPassport Single Sign-On Protocol

When a user attempts to access a service provider, the following protocol is used

to verify the user’s identity and grant or deny access. The user U begins by requesting

access to a service provider S. S responds with its SID, a nonce nS, and possibly a list of

15

authentication servers if U does not already possess such a list. U chooses t

authentication servers from the optional list or from a previously-used list and establishes

session key connections with each as described in the previous section. U then sends the

SID, UID, and nonce nS to each authentication server. Each server constructs the same

message < UID, U, nS > and signs it with the partial key received when S registered on

the authentication network. The result is t distinct messages that contain the same

information but are signed with t different partial keys. The authentication servers send

the messages back to U, and U uses threshold cryptography to combine them to create the

message < UID, U, nS > signed with KS. U sends this message along with its UID to S. If

the message encrypted with S’s public key contains the original nonce and correct UID

then the user is granted access to the service.

2.4.4. ThresPassport Disadvantages

ThresPassport does not require a public key interface (PKI), and in [3] the authors

claim that this is an advantage over systems that rely on a PKI. PKI algorithms require

more computational power, and distributing a public and private key to each entity in the

system increases the account management overhead. However, it is still arguable that the

positives of a PKI outweigh these negatives. In ThresPassport, there is no way to verify

that a contacted authentication server is genuine. All that is known about an

authentication server is its IP address and AID, as the servers do not use cryptographic

keys of any kind. Without a private key to verify the authentication server, it would be

possible to execute an interception attack or DNS lookup table modification and allow

16

another system to pose as an authentication server without needing to possess any

credentials.

 ThresPassport’s username/password identity allows users to login with any

computer. However, a ThresPassport identity is no safer than any other keystroke-based

identity. Capturing a user’s username and password is simple, as the software to perform

this capture could easily be installed on a public machine by an identity thief or on a

home machine by a virus. If a ThresPassport user’s login information is captured, the

malicious entity gains control of the user’s account.

The ramifications of identity theft in SSO are far worse than theft in today’s one-

login-per-site system. Instead of gaining access to one area of a user’s identity the thief

gains complete access, from the trivial (websites and forums) to the critical (bank

accounts and credit cards). SSO needs a security framework that allows it to be easily

used in multiple locations but also protects identities with something stronger than a

username and password.

2.5. Certification and COCA

 Certification is a method of providing trust in a PKI system. Without

certification, an entity’s key is vouched for by that entity only. When an uncertified

system claims to belong to a certain individual or company, there is no guarantee that this

is true. Certification uses certificate authorities (or CAs), trusted third parties that

everyone in the system can rely upon, to securely and correctly vouch for the identity of

the entities. The CA generates a certificate during the account creation process that binds

personal information (name, address, phone number, and other identifying

17

characteristics) with the entity’s public key, and signs a portion of the certificate with its

own private key. To verify that a certificate is genuine, the CA’s public key can be used

to decrypt the certificate’s signature and see that the CA signed the certificate with its

private key.

 The trust in certification is usually built in chains, with the set of working CAs all

receiving their individual certificate from a highly-secure root CA. The root CA is never

connected to any network, it is constantly protected in a restricted-access setting, and

very few people can access the system. For these reasons, if a working CA server

possesses a voucher certificate signed by the root CA its authenticity can be trusted more

than the identity of an authentication server in a non-PKI environment.

 As with authentication systems, a centralized CA can also act as a central point of

failure. To solve this problem, the distributed certification system known as COCA

(Cornell Online Certification Authority) has been proposed [5]. COCA uses threshold

cryptography for distributed certificate operations and a Byzantine quorum system for

fault-tolerance [11]. The threshold scheme employed by COCA is a (t + 1, n) scheme

where n ≥ 3t + 1. With these constraints, COCA will maintain correct operations with up

to t compromised certification servers. The threshold keys are periodically updated with

a “proactive secret-sharing protocol”. In order to control the system, a malicious party

must steal t + 1 partial keys in a relatively short amount of time. Otherwise, the keys will

expire and the attack will fail.

 Each COCA certification server possesses a partial key of the entire system’s

private authentication key. A message must be signed by t + 1 partial keys to create a

18

threshold-encrypted message signed by the private key. Additionally, each server

possesses an individual public and private key for communication within the certification

network. These individual intranet keys can be changed frequently without the need to

propagate this change to users and service providers. This operation adds security within

the certification service but is also simple and efficient to perform.

 Unlike the threshold protocols in CorSSO and ThresPassport where the user

receives all of the partially encrypted messages and combines them, COCA users only

need to contact one of the certificate servers. The contacted server forwards the user’s

request to t + 1 other certificate servers. When enough partial messages have been

returned the contacted server combines them into one message signed with the whole

system’s private key. This approach makes it possible for COCA users to access the

system without needing to possess individual server public keys, and prevents against a

possible attack where a user could be sent many false partial messages and would have to

determine which ones were real.

19

Chapter 3

SeDSSO Components

 This chapter provides a detailed description of the individual components that

make up the entire SeDSSO architecture. SeDSSO consists of three different

components: service providers, users, and authentication servers. These components are

shown in figure 3.1. Service providers are Internet sites that offer a service to users, such

as email, forums, shopping, banking, etc.2 Users are individuals who access service

providers to perform desired tasks. Each user possesses an account that allows service

providers and authentication servers to identify them. Authentication servers store

information about all users and service providers that have registered with the SeDSSO

system. Multiple authentication servers form the authentication service which is

responsible for authenticating SeDSSO users.

2 SeDSSO service providers are not to be confused with Internet service providers (ISPs), which
are transparent to SeDSSO.

20

Figure 3.1: Users, Service Providers, and the Authentication Service are the three basic
components of the SeDSSO system.

3.1. Authentication Service

 Authentication servers are individual systems that work together to vouch for the

identity of users. Because they authenticate users and store information about each

SeDSSO user and service provider, these servers must be high-performance high-

availability systems that can perform many intensive data storage, computation, and

network I/O tasks simultaneously. Collectively, the group of authentication servers is

referred to as the authentication service.

 SeDSSO implements threshold encryption by deploying n authentication servers

and generating one public and private key for the entire authentication service. This key

generation takes place on the certificate authority (CA) server. The authentication

service key generation is its only task, it is never connected to a network, and it is

physically guarded. These steps are required to ensure the security of the authentication

service’s public and private keys and thereby maximize trust in the service. The CA

21

server splits the private key into n partial keys with a (t, n) threshold scheme, and one

partial key is given to each authentication server. Since no authentication server

possesses the entire private key, at least t servers must sign an identical message in order

to act as the authentication service. Every user and service provider in the SeDSSO

system is given access to the authentication service public key, making it possible to

verify messages signed by the authentication service private key.

Individual authentication servers each possess a self-generated public and private

key to use for server-to-server communications, similar to the intranet keys found in

COCA. It is only necessary that authentication servers know these keys, and they do not

need to be distributed to users and service providers. The presence of these keys

facilitates secure communication within the authentication service.

3.2. Service Providers

 Service providers offer some type of service to users through the provider’s web

site. The service provider can be a business web site or a personally-owned site and can

offer any combination of free or payment-based services. The only requirement is that

the service provider has the need to identify individual users. Joining SeDSSO allows

this provider to offer personalized services to users without having to invest in standalone

authentication software and hardware, because the authentication service performs this

function for all service providers.

 When a service provider account is created, it is given a unique service provider

ID generated by the authentication service. The service provider creates its own public

and private key pair and sends the public key to the authentication service. Each

22

authentication server associates the public key with the service provider ID. Once the

service provider has been added, it can start accepting logins from SeDSSO users as

described by the sign-on protocol.

 Although the authentication service centralizes authentication for the entire

SeDSSO system, its functionality does not extend into specific service provider

requirements. Service providers must store all site-specific user data on their own

servers, and can do this in any way they choose. As long as the stored user data is related

to SeDSSO user identifiers then the service provider will be able to recall the data for that

user as soon as the sign-on procedure is completed.

3.3. Users

 The user account is an individual’s representation on the SeDSSO service. A

user’s identity is represented by a username and password as well as a public and private

key. The user creates all of these values, but the username must be verified by the

authentication service to ensure that it has not been previously chosen. The username

(and the corresponding username hash) is the information by which service providers,

authentication servers, and other users identify an individual. It is possible for a person

to separate their identity by possessing multiple accounts, although the need to remember

too many usernames and passwords negates one of the major benefits that a SSO identity

provides.

 An email address may be entered at the time of user account creation. This

address can be supplied by any email provider, even if they are not part of the SeDSSO

system. When the creation process is complete, an email containing the new user’s

23

username and password is sent to this address. Entering an email address when creating

an account is not required, but it can be done to provide an additional way to recall the

account password.

 A user can sign on to any service provider with his or her existing SeDSSO user

identity. Upon a user’s first login, the service provider adds a new record to its own user

database. Without sending any additional data to the service provider, a user should be

able to perform tasks that do not require personal verification (such as browsing a store’s

items or posting comments on a forum). In situations where a SeDSSO identity must be

tied to a real-life identity (such as money management and store purchases) the user will

need to provide additional information to the service provider. This information will be

associated with the user’s account on the service provider system.

24

Chapter 4

SeDSSO User Identity System

SeDSSO represents users with a two-factor identity consisting of their

username/password as well as information stored on a specialized USB device. The

username and password is the factor that they know and the information on the USB

device is the factor that they have. Possession of both factors is required for a user to

successfully authenticate with the SeDSSO system. The advantage of this system is that

a coordinated effort is required to steal a user’s identity, and classic one-factor attacks are

insufficient. Keystroke logging software cannot access the USB device information, and

the theft and examination of the USB device does not reveal the corresponding username

and password.

4.1 USB Identity Device (USBID)

The SeDSSO USB identity device (USBID) is a specialized device that combines

a built-in processor with flash memory and communicates with a computer through the

USB interface. All of the hardware is housed in a casing the size of a normal USB flash

drive. The USBID is responsible for storing the public and private keys for one or more

25

users, as well as the secret counter values that allow users to gain authorization with

service providers. This device must be accessible by the client software every time

SeDSSO account creation or authentication is requested. A similar USB-interface

computation device with specialized hardware was proposed in [12], but was designed

for electronic payment instead of SSO identity proof.

The USBID architecture is shown in figure 4.1. The processor is powered by the

USB port connection. The USBID processor generates the user’s private and public key

when the account is created and is responsible for performing all operations that require

the use of identity factors, such as signing a message with the private key. This makes it

unnecessary to pass the user’s private key to the computer where it could be observed by

a program designed to retrieve this information. The public key is passed to the user’s

system and sent to the authentication service for storage, but the private key remains

exclusively in the USBID and is encrypted with the user’s password.

Figure 4.1: The USBID consists of both a processor and memory. The memory cannot be
accessed directly by the user.

When a communication message needs to be signed during the authentication

process, the client software passes the message to the USBID processor. The processor

26

retrieves the encrypted private key from memory and decrypts it with the password.

Once the private key has been decrypted it is used to sign the message, and the signed

message is returned to the client software on the user’s system.

The USBID memory is standard flash memory. However, unlike common flash

drives, the USBID does not allow access to the memory through a computer file system.

Only the USBID processor can access this memory. The client software translates

actions in the SeDSSO client software user interface into low-level device driver

commands, and these commands indicate to the USBID processor what information must

be retrieved during processing. The processor acts as a black box, providing the

necessary output but keeping memory retrieval, storage and modifications transparent to

the user system.

4.2 Counter System

The counter system is part of the “have” factor in SeDSSO’s two-factor

authentication scheme. To make authentication impossible without the USBID, a

pseudo-random number generator seed is created and stored on the service provider’s

system and the user’s USBID. The USBID uses the seed to generate a number during the

authentication process and this number is sent to the service provider. If the service

provider generates the same number then the user’s possession of the seed (and therefore

possession of the USBID) has been proven.

Although the authentication service implements two-factor authentication on its

own by requiring the user’s private key from the USBID, the counter system provides an

effective additional layer of security. Even if t authentication servers are hacked so that a

27

malicious party can gain authentication as a user without the USBID, the service provider

requires the counter value on the USBID independently. Possession of the correct

counter value is still required to gain access to any service provider. An attacker who

gains control of a user’s identity without possessing the USBID cannot access any service

providers that the user has contacted in the past, because once the first authentication has

been performed then a working counter is established.

4.3. Counter Value Operation

When a user attempts an authenticated connection to a service provider for the

first time, the counter value between these two parties does not yet exist. In this case, the

voucher for the user’s identity generated by the authentication service is sufficient for

authentication. The service provider creates a seed that will be used for generating the

counter, and its successful authentication response to the user includes this seed. In the

future, the service provider will require that the next counter value be sent by the user in

order to gain authentication.

Three variables describe the state of the counter: seed, depth, and maxDepth.

Seed is the number originally generated by the service provider and is used to seed the

pseudo-random number generator responsible for creating the counter value that is sent.

Depth is the number of times that the seeded generator is executed to produce the next

counter. When a new seed is generated depth starts at 1, and each time a connection is

successful the user and service provider increment depth by 1. MaxDepth is the

maximum value that depth can attain. This number changes whenever a new seed is

created, and is set to the last 2 digits of the newly created seed + 1. If maxDepth did not

28

limit the number of times that seed is used then the authentication process would become

prohibitively processor intensive as the user’s number of authentications increased.

Once depth has reached maxDepth both the user and service provider are required

to independently calculate new seed, depth, and maxDepth values. The final counter

value (produced by iterating maxDepth times on a seed-seeded pseudo-random number

generator) is used as the new seed. Depth is reset to a value of 1, and maxDepth is set to

the final 2 digits of the new seed + 1. Both parties use this process to create the next

counter value and expect the other party to do the same.

29

Chapter 5

SeDSSO Processes

 This chapter describes the operation and communication processes necessary for

SeDSSO to function. The first section covers the setup processes which are responsible

for initializing secure connections as well as adding new components. The authentication

processes are presented next and deal with both user-to-authentication service

communication as well as user-to-service provider sign-on. Finally, the processes for

managing existing SeDSSO identities are discussed.

5.1. Setup Processes

 The first process in this section describes the steps necessary to generate a session

key and set up a secure symmetric-encryption connection. This session key is generated

at the beginning of every communication process between two existing SeDSSO parties.

Additionally, this section details the processes for adding new authentication servers,

service providers, and users.

30

5.1.1. Session Key Generation

Because public/private key pairs place strict length limitations on the encrypted

payload and require far more CPU effort than symmetric keys, they are only used at the

beginning of a session. Once it has been verified that both communicating parties know

the private key corresponding to their claimed identity, a symmetric session key is

created and used for the remainder of the communication. In the following protocol, C is

the connecting system and R is the receiving system.

Note that in step 1, the connecting system can send its public key as an optional

parameter in situations where the receiving system does not yet have this key stored.

This is necessary in some situations such as user account creation where the user account

does not exist.

1. C → R: < nonceC, [KC] > KR

2. R → C: < nonceC XOR 00…0001, nonceR, SK > KC

3. C verifies that the first parameter in the above message is its generated nonce with

the last bit flipped. If so, SK is stored as the symmetric key for this session.

4. C → R: < nonceR XOR 00…0001 > SK

5. R verifies that the parameter in the above message is its generated nonce with the

last bit flipped.

6. R → C: < “success” > SK

31

5.1.2. Adding an Authentication Server

Because this process occurs very infrequently, must be highly secure and consists

of extra-network steps, it is not implemented using a communication protocol. The

SeDSSO simulation is provided all of the authentication server information before

execution. In a real SSO system the security risk of adding a new authentication server is

high enough to warrant an addition consisting of exclusively extra-network

communication. When the new authentication server identity is established, it is

necessary to synchronize the server’s data with the data stored by the other authentication

servers.

The authentication server parameters are as follows: AID is the authentication

server ID, KA is the authentication server’s individual public key, kA is the authentication

server’s individual private key, IPA is the authentication server’s receiving IP address,

and PA is the authentication server’s receiving port. In addition, the authentication

service has a single public key KAS and a corresponding private key kAS. No server has

possession of the entire service private key, but each possesses a distinct partial private

key kpAS. When t distinct kpAS keys are used to create t encryptions of the same message,

the encryptions can be combined to form one message encrypted with the private key kAS.

5.1.3. Adding a Service Provider

The service provider uses extra-network communication to add itself to a single

authentication server Ac. Ac then uses the following protocol to add the service provider

to every other authentication server.

32

The service provider data is referred to as follows: SID is the service provider ID,

KS is the service provider’s public key, IPS is the service provider’s receiving IP address,

and PS is the service provider’s receiving port.

1. Ac establishes a secure session key connection with each authentication

servers A1…An.

2. Ac → A1…An : “ADD_SP”, 1, < SID, KS, IPS, PS > SK

3. A1…An : add this service provider to the service provider database

4. A1…An → Ac : “ADD_SP”, 2, < “success” or “failure” > SK

5.1.4. Adding a User

User data collection and generation takes place in the initialization functions

when the user software is executed. This inputs and generates all data necessary to begin

the user addition process.

The user data is referred to as follows: UID is the unique user ID, UP is a hash of

the username and password combined, KU/kU is the user’s public/private key

combination, and INV is the account invalidation code.

The addition process begins after data collection has taken place on the user’s

computer. The user enters the username and password. UID is calculated by hashing the

username and UP is calculated by hashing the username and password combination. A

secure pseudorandom number and computing environment data is used to seed the

generator for KU, kU and INV.

33

1. User U establishes a secure session key connection with a random available

authentication server A. U sends its newly-created public key as the optional

argument.

2. U → A: “CREATE_USER”, 1, < UID, UP, KU, hash(INV) > SK

3. A verifies that the UID is not already claimed by another user account. If so, A

returns a failure and ends this process. If not, A continues.

4. A establishes a secure session key connection with all other authentication servers

A1…An. Each connection uses an independent SK.

5. A → A1…An : “ADD_USER”, 1, < UID, UP, KU, hash(INV) > SK

6. A1…An decrypt and analyze the message and return one of the following messages

to A.

a. If the message cannot be decrypted or data is in an improper format, send:

“ADD_USER”, 2, < “general_failure” > SK.

b. If the UID has already been taken, send: “ADD_USER”, 2, <

“uid_failure” > SK.

c. If the data passes validation, save the user data to a temporary variable

(without yet adding the user) and send: “ADD_USER”, 2, < “success” >

SK to A.

7. A receives messages from A1…An and tallies their responses.

a. If A received t or more “success” messages and no “uid_failure” messages,

add the user and send: “ADD_USER”, 3, < “add” > SK to A1…An.

b. If A received less than t “success” messages or 1 or more “uid_failure”

messages, send: “ADD_USER”, 3, < “discard” > SK.

34

8. A1…An receive the “ADD_USER”, 3 message from A and either add the user or

discard the user’s information without adding.

9. A sends a message to U describing the results of the user creation process.

a. If A received t or more “success” messages and no “uid_failure” messages,

send: “CREATE_USER”, 2, < “success”, UID > SK.

b. If one or more “uid_failure” messages are received the user account is not

created. Send: “CREATE_USER”, 2, < “uid_failure”, UID > SK.

c. If A received less than t “success” messages after a specified time limit,

send: “CREATE_USER”, 2, < “general_failure”, UID > SK.

10. U receives the message from A and reports the status to the user accordingly.

a. If U received “success”, report that the user account has been successfully

created and is ready for use. The client software stores UID, KU and kU on

the USBID for use in future logins. The invalidation code INV is stored

on the hard drive, not the USBID, for reasons that are discussed in

invalidation protocol section 5.3.1.

b. If U received “uid_failure”, report that the desired username is not

available and the user should choose a new name.

c. If U received “general_failure”, report that the authentication system is not

available at this time and the user should try again later.

5.2. Authentication Processes

 The processes for user authentication are defined in this section. Authentication

requires the user to communicate with the authentication service to obtain an identity

35

voucher. This voucher must contain a fresh nonce that the service provider sent to the

user and must be signed with the authentication service private key. Every authentication

process between a user and service provider relies on this voucher.

5.2.1. User Authentication Voucher Generation

Before a user can access a service provider, that user must receive a message

signed by the authentication system that vouches for their identity. This message

contains the user ID and service provider ID, the username/password hash, and a nonce

created by the service provider to eliminate the possibility of replay attacks.

1. User U establishes a secure session key connection with a random available

authentication server A.

2. U → A: “AUTHENTICATE_USER”, 1, < UID, UP, nonce > SK.

3. A randomly selects a set AuthSet of t-1 authentications servers which it intends to

contact. A adds both itself and these servers to a set ContactedSet.

4. A creates 2 response sets, one to collect the successful authentication responses

and the other to collect the failed authentication responses.

5. A establishes a secure session key connection with each authentication server in

the AuthSet. Each connection uses an independent SK.

6. A → ∀ Ax ∈ AuthSet: “AUTHENTICATION_CHECK”, 1, < UID, UP, nonce >

SK.

7. A examines the information it received from U.

36

a. If the UID exists and the UP corresponds to this UID, add A’s response to

the success set.

b. If the UID does not exist or the UP does not correspond to this UID, add

A’s response to the failure set.

8. The servers in AuthSet decrypt and analyze the message and return one of the

following messages to A.

a. If there is an error decrypting the message, the UID is not found, or the

UP for this UID is incorrect, send a failure message:

“AUTHENTICATION_CHECK”, 2, < “failure” > SK.

b. If the UID exists and the UP corresponds to this ID, send a success

message: “AUTHENTICATION_CHECK”, 2, < < UID, nonce > kpAS > SK.

9. A receives all responses from the AuthSet servers and adds each to the appropriate

response set.

10. If any responses are present in the failure set:

a. A randomly selects an authentication server which is not present in

ContactedSet. It adds this random server to ContactedSet.

b. A sends the message from step 6 to the random server, examines the

received response, and adds the response to the success or failure set

accordingly.

c. Step 10 is repeated until t successes have been counted, time runs out, or

there are no more authentication servers to contact.

11. When A has received t successful responses, n total responses, or has timed out, it

performs one of the two actions:

37

a. If t or more authentication servers responded with a successful

authentication message, A threshold combines t of the partial

authentication messages into one message and sends the following to U:

“AUTHENTICATE_USER”, 2, < “success”, < UID, nonce > kAS > SK.

b. If less than t authentication servers responded with a successful

authentication message, A sends the following to U:

“AUTHENTICATE_USER”, 2, < “failure” > SK.

5.2.2. Initial User Sign-on to a Service Provider

The sign-on procedure describes the steps necessary for a SeDSSO user with an

existing account to gain access to a service provider. The following process describes a

user’s first access to a service provider.

1. User U wants to access a service provider S for the first time. The client software

provides an interface for U to contact S, enter the account username and

password, and begin the authentication process.

2. U establishes a secure session key connection with S.

3. U → S: “USER_SIGN_ON”, 1, < UID > SK.

4. S → U: “USER_SIGN_ON”, 2, < nonceS > SK.

5. U performs the authentication message request procedure (from section 5.2.1)

using UID and nonceS.

a. If the authentication is successful, U receives the message < “success”, <

UID, nonceS > kAS > SK and continues the sign-on procedure.

38

b. If the authentication is not successful, U receives the message < “failure”

> SK, aborts the sign-on procedure and instructs S to do the same by

sending “USER_SIGN_ON”, 3, < “failure” > SK.

6. U → S: “USER_SIGN_ON”, 3, < “success”, < UID, nonceS > kAS > SK.

7. S decrypts the message with its session key and then with the public

authentication system key KAS.

a. If the message cannot be decrypted, if UID is incorrect, if nonceS does not

match the nonce originally generated by S, or if the user has signed on to S

previously then the sign-on to S is denied and S sends

“USER_SIGN_ON”, 4, < “failure” > SK to U.

b. If the UID correctly matches U, if nonceS is equal to the nonce generated

by S in step 2, and if U has never signed on to S, then the authentication

procedure continues.

8. S generates a pseudo-random long number seedUS to use as a common seed for the

counter values when U signs on to S. S stores seedUS as well as an integer depthUS

(initialized to 1), which tracks the number of repetitions necessary to generate the

next counter value. S also calculates the maximum depth max_depthUS by

observing the two least significant of seedUS and setting max_depthUS to a number

consisting of these two digits plus 1.

9. S → U: “USER_SIGN_ON”, 4, < “success”, seedUS > SK. S grants an access

session to U.

10. U stores seedUS, initializes its own stored depthUS to 1, sets max_depthUS to the

two least significant digits in seedUS + 1, and associates these values with S to use

39

for subsequent sign-on attempts. The user is now granted a session to the service

provider.

5.2.3. Subsequent User Sign-on to a Service Provider

The following procedure is performed when a user attempts to sign on to a service

provider that they have already successfully logged on in the past. The seedUS, depthUS

and max_depthUS fields are stored by both U and S and must remain synchronized for

successful authorization.

1. User U wants to access a service provider S that it has accessed before. The client

software provides an interface for the user to choose S, enter their account

username and password, and begin the authentication process.

2. U establishes a secure session key connection with S.

3. U → S: “USER_SIGN_ON”, 1, < UID > SK.

4. S → U: “USER_SIGN_ON”, 2, < nonceS > SK.

5. U performs the authentication message request procedure (from section 5.2.1)

using UID and nonceS.

a. If the authentication is successful, U receives the message < “success”, <

UID, nonceS > kAS > and continues the sign-on procedure.

b. If the authentication is not successful, U receives the message < “failure”

> SK, aborts the sign-on procedure and instructs S to do the same by

sending “USER_SIGN_ON”, 3, < “failure” > SK.

40

6. U generates the next counter value to send by retrieving the stored seedUS value,

using it to seed a new generator, iterating through the generator depthUS times and

saving that generated number as counterUS.

7. U → S: “USER_SIGN_ON”, 3, < “success”, < UID, nonceS > kAS, counterUS > SK.

8. S decrypts the message with its session key and then with the public

authentication system key KAS.

a. If the message cannot be decrypted, if UID is incorrect, if nonceS does not

match the nonce originally generated by S, or if the user has never signed

on to S before, then the sign-on to S is denied and S sends

“USER_SIGN_ON”, 4, < “failure” > SK to U.

b. If the UID correctly matches U, if nonceS is equal to the nonce generated

by S in step 2, and if U has signed on to S before, then the authentication

procedure continues.

9. S uses the same process that U used in step 6 to calculate counterUS.

a. If the counter generated by S matches the counter sent by U, send

“USER_SIGN_ON”, 4, < “success” > SK to U. S grants an access session

to U and increments depthUS by 1.

b. If the counter generated by S does not match the counter sent by U, send

“USER_SIGN_ON”, 4, < “failure” > SK to U. S does not grant access to U

and does not increment depthUS.

10. U receives the message from S and decrypts the contents with the session key.

a. If the message is “success”, U increments depthUS by 1. The user is now

granted a session to the service provider.

41

b. If the message is “failure”, the client software reports an authorization

error to the user. The depthUS is not incremented.

When max_depthUS successful logins have been performed, depthUS equals

max_depthUS and both U and S must generate new seedUS, depthUS and max_depthUS

values. This is done by using the last used counter value as the new seedUS, setting

depthUS back to 1, and calculating a new max_depthUS by creating a number from the last

2 digits of seedUS and adding 1. U and S perform this counter update without indicating

in a message that the change is being performed.

5.3. Identity Management Processes

 Identity management involves modifying an existing SeDSSO account on the

authentication service. The following protocol allows a user account to be invalidated, so

that any subsequent attempts to sign on are unsuccessful.

5.3.1. User Account Invalidation

The user’s system generates an invalidation number when a user account is

created. The secure hash of this value is distributed to each authentication server for

storage, and the actual value is stored on the user’s system (not the USBID). Access to

the invalidation code is the only information necessary to invalidate the account because

a thief may change the password and user information immediately after theft. In the

event of a USBID theft, a computer system possessing the invalidation file can prevent

the stolen account from being used.

42

1. User U begins the invalidation process by initiating invalidation in the client

software. If the software can locate the file containing the invalidation number

INV then the process continues.

2. U → A1 … An: “INVALIDATE_USER”, 1, UID, INV.

3. Each authentication server hashes the received INV value.

a. If the calculated hash is equivalent to the stored hash(INV) for U, the

authentication server removes the user’s account from the system and

sends “INVALIDATE_USER”, 2, “success” to U.

b. If the calculated hash is not equivalent to the stored hash(INV) for U, the

authentication server does not remove the user’s account from the system

and sends “INVALIDATE_USER”, 2, “failure” to U.

4. U’s client software tallies the responses received from all authentication servers.

a. If more than n – t invalidation attempts succeeded, user authentication is

no longer possible and a successful invalidation is reported.

b. If n – t or fewer invalidation attempts succeeded, user authentication is

still possible and a failed invalidation is reported.

43

Chapter 6

SeDSSO Implementation and Results

 A project simulating the operation of each SeDSSO component has been created

to test the performance and correct operation of a working SeDSSO system. The project

is programmed in Java and compiled with the Java SE 6 platform. Java security libraries

are used for public-key and symmetric-key encryption, Java network libraries are used

for communication between components, and the ThreshSig library [27] created by

Stephen Weis is used for threshold cryptography.

The certificate authority (CA) server, authentication server, service provider, and

user are implemented as separate classes within the program and each is executed on a

different virtual machine. SeDSSO processes describing the communication between

these components have been implemented in the simulation project according to the

specifications in chapter 5. Routines were developed to test performance by measuring

the operation time of selected processes and test correctness by verifying the output

against expected results. This chapter discusses the data collected from these tests.

44

6.1. Certificate Authority Server Program

The certificate authority (CA) server program is implemented as a set of 4 major

Java classes.

1. RootCA.java:

� initializes itself as a working instance of a certificate authority server

� generates the public key for the authentication service, and a set of partial

keys to distribute to individual authentication servers

� instantiates a RootCAReceiver object that waits for messages from

SeDSSO authentication servers

2. RootCAReceiver.java:

� binds to a specific port on the authentication server’s IP address, receiving

initial incoming messages and creating new RootCAConnection objects to

handle the connections

3. RootCAConnection.java:

� manages a connection with another component from start to finish

� sends and receives messages to and from the other component

� uses a RootCAProtocol object to track the state of the connection, process

incoming messages, and create outgoing messages

4. RootCAProtocol.java:

� contains code to distribute the public and partial authentication service

keys to authentication servers

� stores the current process and step number, and processes an incoming

message only if it is the expected message

45

� creates messages and sends them to the connected SeDSSO component

The CA server program generates the threshold keys necessary for the distributed

authentication service. RSA-based threshold cryptography is implemented using

ThreshSig, a Java implementation of Shoup’s threshold signature scheme created by

Stephen Weis. The CA server uses a ThreshSig Dealer object to create a 512-bit RSA

public/private key pair and split the private key into a set of partial keys. Once the keys

have been created, the CA server accepts connections from authentication servers and

distributes these keys.

While this over-the-network distribution of the partial keys conflicts with the

manual distribution described in the SeDSSO protocol, the simulation operates this way

for ease of setup and testing. In a real threshold cryptography system, a root CA would

not be accessible by other systems.

6.2. Authentication Server Program

 The authentication server program is implemented as a set of 4 major Java

classes.

1. AuthServer.java:

� initializes itself as a working instance of an authentication server

� stores all the information that an authentication server must retain about

itself, other authentication servers, service providers, and users

� instantiates an AuthServerReceiver object that waits for messages from

other SeDSSO components

2. AuthServerReceiver.java:

46

� binds to a specific port on the authentication server’s IP address, receiving

initial incoming messages and creating new AuthServerConnection

objects to handle the connections

3. AuthServerConnection.java:

� manages a connection with another component from start to finish

� sends and receives messages to and from the other component

� uses an AuthServerProtocol object to track the state of the connection,

process incoming messages, and create outgoing messages

4. AuthServerProtocol.java:

� contains all SeDSSO authentication server protocol code (the

implementation of the chapter 5 processes)

� stores the current process and step number, and processes an incoming

message only if it is the expected message

� creates messages and sends them to the connected SeDSSO component

The authentication server implementation creates a working server instance and

using this instance to perform all authentication server operations. SeDSSO requires a set

of authentication servers to form an authentication service, so each server class retrieves

the predefined addresses, ports, and public keys of the other servers at runtime.

Constants in the AuthServer class make it possible to change both the total number of

authentication servers (the n value) and the required number of successful authentication

servers (the t value) from one execution to the next. This was used to easily perform the

same tests using authentication services of different sizes.

47

Each authentication server possesses a ThreshSig KeyShare object which

encapsulates the server’s partial key. These KeyShares are used to create signatures of

the user identity voucher described in section 5.2.1. ThreshSig enables t signatures to be

combined into one voucher by an authentication server, and this voucher is sent to the

user who forwards it to the service provider.

6.3. Service Provider Program

 The service provider program is implemented as a set of 4 major Java classes.

1. ServiceProvider.java:

� initializes itself as a working instance of a service provider system

� stores all the information that a service provider must retain about itself,

authentication servers and users

� accepts command line input to begin the process for creating a service

provider record on the authentication service

� instantiates a ServiceProviderReceiver object that waits for messages from

SeDSSO users

2. ServiceProviderReceiver.java:

� binds to a specific port on the service provider’s IP address, receiving

initial incoming messages and creating new ServiceProviderConnection

objects to handle the connections

3. ServiceProviderConnection.java:

� manages a connection with another component from start to finish

� sends and receives messages to and from the other component

48

� uses a ServiceProviderProtocol object to track the state of the connection,

process incoming messages, and create outgoing messages

4. ServiceProviderProtocol.java:

� contains all SeDSSO service provider protocol code (the implementation

of the chapter 5 processes)

� stores the current process and step number, and processes an incoming

messages only if it is the expected message

� creates messages and sends them to the connected SeDSSO component

 The service provider implementation does not actually provide a service, but it

performs all functions necessary to create a service provider identity and add it to the

authentication service. It also allows new and returning users to connect to the service

and performs all the steps necessary to trust a user. The counter system is fully

implemented, with the code necessary to generate a new counter value for users and

modify the counters each time a successful login takes place.

When the service provider receives a user identity voucher, it uses ThreshSig

code to verify that the original voucher message was properly signed by the

authentication service.

6.4. User Program

 The user program is implemented as a set of 3 major Java classes.

1. User.java:

� initializes itself as a working instance of the client software

49

� stores all the information that a client program must retain about the

user/users, authentication servers and service providers

� accepts input to create a user account on the authentication service,

retrieve the list of service providers, connect to a service provider with an

existing user account, and invalidate the user account on the authentication

service

2. UserConnection.java:

� manages a connection with another component from start to finish

� sends and receives messages to and from the other component

� uses a UserProtocol object to track the state of the connection, process

incoming messages, and create outgoing messages

3. UserProtocol.java:

� contains all SeDSSO user protocol code (the implementation of the

chapter 5 processes)

� stores the current process and step number, and processes an incoming

message only if it is the expected message

� creates messages and sends them to the connected SeDSSO component

The user program performs all actions that would be initiated through the

SeDSSO client-side software. This program is responsible for beginning the user account

creation process with the authentication service. Once an account has been established

the program retrieves the list of service providers from the authentication service and

allows the user to perform initial and subsequent logins to these service providers.

50

Additionally, the program enables the user to contact the authentication service and

invalidate their account.

Unlike the service provider and authentication server programs, the client

software does not require a connection receiver running in the background because users

are responsible for sending the first message in all user-related processes. The

authentication server addresses are set in the client software, and a random authentication

server is chosen from this list to begin communications with the authentication service.

If a server is unavailable then another server contact is attempted. This process repeats

until a working connection is established or all the authentication servers are found to be

unavailable.

USBID devices have not been implemented due to the extensive development and

monetary investment that this would require. At this time the USBID functionality is

simulated in the client software. The user’s private key and counter values are stored as

User class attributes instead of directly on the USBID, and the USBID is always assumed

to be present in processes where it is required.

6.5. Implementation Tests

6.5.1. Test Specifications

SeDSSO implementation tests use high-resolution system timer measurements

and command line output provided by a set of User class functions. In addition to

reporting the success or failure of a test, the completion time of the test is measured from

the time the user program begins the process to the time it receives the final result

message for that process.

51

 The three SeDSSO functions that compose the majority of a working system’s

operations are used for testing. The first test is user account creation described in section

5.1.4. In an ideal situation n authentication servers are available and the user account is

created successfully on every server. However, user account creation should succeed

even when some authentication servers are unavailable (provided that at least t servers

are working). The user-contacted authentication server must record the unavailable

servers and inform them of the new user when those servers become available. In the

event that less than t authentication servers are working the user should receive a message

reporting that account creation failed and no authentication server should store the user’s

information.

 The second test is user sign-on to a service provider. Signing on consists of

several different processes described in section 5.2. The user contacts the service

provider and requests access, and the service provider returns a random nonce value. The

user then requests an identity voucher from the authentication service and sends the

nonce to be included in the voucher. If t or more authentication servers are available and

if those servers can authenticate the user, a voucher message signed with the

authentication private key is sent back to the user. Once the service provider examines

and verifies a successful voucher, the counter value operation is performed. If the

counter value is created successfully (for a new counter) or verified successfully (for an

existing counter) then the service provider trusts the user and reports a successful sign on.

 The final test is user invalidation with the authentication service. This process is

presented in section 5.3.1. The user program sends an invalidation message to each

authentication server individually, and the process is successful if more than n – t servers

52

are invalidated. In this case, less than t authentication servers will trust the user and

authentication is no longer possible. If any invalidation attempts fail, the user system will

log them and periodically attempt to invalidate its account on these authentication

servers.

6.5.2. Test Environment

Individual components of the SeDSSO simulation were executed on separate Sun

Blade workstations running the Solaris 10 operating system. Each workstation contains a

1 GHz Ultra SPARC III 64-bit processor and 1024 MB RAM, and they all connect to the

same 100 Mbps network.

Tests were run first with 3 authentication servers and then with 9 authentication

servers, allowing SeDSSO performance to be analyzed as the size of the distributed

authentication service increases. In addition, the tests were performed with all of the

authentication servers working and then with varying numbers of servers working. This

enables the performance effect of unavailable servers to be measured. The number of

components running simultaneously in our tests ranged from a minimum of 5 (1 CA

server, 2 authentication servers, 1 user, and 1 service provider) to a maximum of 12 (1

CA server, 9 authentication servers, 1 user and 1 service provider).

 The time necessary to detect an unavailable system varies in different operating

system environments. Most UNIX and Linux operating systems do not retry the

connection after the first failure and instead return a socket error within several

milliseconds, while Windows retries the connection 5 times with increasing wait times as

described by [18, 19]. In initial SeDSSO tests (run on Windows systems) the delay

53

averaged around 1 second per unavailable system, resulting in poor performance and

skewed time measurements. Although a partial workaround for the Windows delay was

found, the test environment was moved to the Solaris systems in order to achieve more

realistic test results.

6.6. Test Results

 The following test results were calculated by averaging the results of 50

individual tests. Prior to the measurements, the tested operation was run once to make

sure that the Java virtual machine had performed all of the necessary compilations.

6.6.1. User Account Creation

 Figure 6.1 presents the time that it takes to create a SeDSSO user account with an

authentication service composed of 3 servers (n = 3). The minimum number of servers

required to use the authentication system private key was set to 2 (t = 2). When all

authentication servers are available the average account creation time is .6842 seconds

and with only two servers working that time decreased to .6173 seconds. If less than 2

servers are available the user program correctly reports an inability to achieve account

creation.

54

Figure 6.1: User account creation times for n = 3 and t = 2.

 User account creation tests were also run on a SeDSSO system with n = 9 and t =

5, and authentication service sets of 9, 7, and 5 working servers were tested. This data is

shown in figure 6.2. With all servers working the average completion time is .7139

seconds, decreasing to .6815 seconds when only 7 servers are available and further

decreasing to .6766 seconds with only 5 servers functioning. If any less than 5 servers

are available then an account creation error occurs.

55

Figure 6.2: User account creation times for n = 9 and t = 5.

If less than n authentication servers are running then unavailability is encountered

at two points in the account creation process. When the user randomly selects an initial

authentication server to contact (as described in step 1 of the protocol in section 5.1.4)

there is a chance that an unavailable server will be contacted. One or more additional

random attempts will be necessary to find an authentication server that is available. Once

a connection with a working authentication server has been established, that

authentication server will encounter the unavailable server or servers as it attempts to

connect to all other authentication servers.

The account creation time decreases as the number of unavailable servers

increases because detecting unavailability is faster than the account creation process.

Unavailability is detected in several milliseconds, but the communication between two

working systems can take several tenths of a second (although the multi-threaded

authentication server implementation minimizes the delay by allowing multiple

56

connections to progress simultaneously). In the n = 3 test, having only 2 available

servers results in a 9.8% decrease in account creation time. The n = 9 test shows a

decrease of 4.5% when only 7 servers are available, and that time is decreased by an

additional .72% when moving to 5 available servers.

While the account creation times appear better when fewer authentication servers

are working, a realistic SeDSSO authentication service would need to pass the newly-

created user to the unavailable servers when they resume availability (this process was

not implemented in our simulation). In that case, the additional overhead would make the

total performance requirement of unavailable servers more costly than when all

authentication servers are working.

6.6.2. User Sign-On

 The times measured for user sign-on tests with n = 3 and t = 2 are shown in figure

6.3. Three available authentication servers yield an average sign-on time of 1.7438

seconds. If one of the servers is disabled the time rises to 2.0891 seconds, a 19.8%

increase in sign-on time.

57

Figure 6.3: User sign-on times for n = 3 and t = 2.

 User sign-on was also tested with n = 9, t = 5, and 9, 7, and 5 authentication

servers available. This data is shown in figure 6.4. When all servers are available the

average sign-on time is 1.8328 seconds. With only 7 servers available the time increases

to 2.3167 seconds (a 26.4% sign-on time penalty), and 5 servers functioning raises the

sign-on time to 2.4883 seconds (an additional 7.4% increase in time).

58

Figure 6.4: User sign-on times for n = 9 and t = 5.

 Unlike account creation, the sign-on process does not need to attempt a connection with

all n authentication servers. Once the first server is contacted, that server only needs to

receive signatures from t-1 different servers in order to sign the user identity voucher

with the authentication service private key. The contacted authentication server chooses

the set of t-1 servers at random and attempts to create connections with all of them

simultaneously. The process is designed this way to minimize the load on the

authentication service and improve sign-on times.

 When the entire authentication service is available, all of the initial random server

connections are successful and the voucher is created in the fastest time possible. This is

verified by the times for 3 and 9 servers available in figure 6.3 and figure 6.4

respectively. As the number of available servers declines, the more likely it becomes that

the user needs to contact multiple authentication servers until it discovers a working

server. Additionally, the contacted server may encounter connection errors with other

59

servers and thus need to attempt new connections to collect t signatures. While

communication with a newly-contacted server consumes the same amount of processing

time as the initial connections, the new connections begin at a delayed time and

subsequently increase the total length of the single sign-on process.

6.6.3. User Account Invalidation

 User account invalidation is a straightforward process. The user program contacts

each authentication server individually and presents the invalidation number. The hash

of this number must match the hash that was presented at the user account creation in

order for an authentication server to remove the user’s account. If more than n – t servers

invalidate the user account then future authentication attempts are impossible and

invalidation is a success. Figure 6.5 and 6.6 show the times for account invalidation.

Figure 6.5: User account invalidation times for n = 3 and t = 2.

60

Figure 6.6: User account invalidation times for n = 9 and t = 5.

For the system where n=3 and t=2, invalidation with all 3 authentication servers

available takes .1342 seconds on average. If only 2 servers are available, the time is

reduced to .1044 seconds. Likewise, the invalidation times for n=9, t=5 with 9, 7, and 5

servers available are .1601 seconds, .1445 seconds, and .1388 seconds respectively.

The user simulation performs invalidation sequentially with each authentication

server. If a server is available then the invalidation process is executed completely, and

that server responds with either a success or failure. When a server is unavailable, the

user considers the invalidation to have failed for that server. The act of invalidation

requires more time than the detection of an unavailable server, resulting in data that is

similar to the measurements from user account creation. As the number of available

servers decreases, invalidation time decreases.

Even though user sign-on is impossible after n – t authentication servers have

performed invalidation, it is beneficial for user security and server performance and

61

storage to invalidate the user on all authentication servers, including those that might

have been unavailable at the time of invalidation. This requirement could be

implemented in the user software, but a more reliable method would involve the

authentication service creating an invalidation queue for unavailable servers. When a

server came back online, it would need to perform all actions on the queue. Despite the

slightly faster invalidation times when some servers are unavailable, the overhead of

these servers would cause more work than if all authentication servers had been available.

6.7. Security Analysis

In the past, SSO systems have experienced vulnerabilities to two major security

attacks. A man-in-the-middle attack occurs when an eavesdropper intercepts messages

between two parties to change them without either party knowing that such an attack has

taken place. Given the distributed flow of internet traffic, it is possible for an

eavesdropper with access to a routing device to observe raw communication messages in

any protocol. These attacks have taken place on systems with various security protocols,

including some that rely on public-key cryptography.

SeDSSO is immune to man-in-the-middle attacks. In order for a man-in-the-

middle attack to work against SeDSSO’s public-key authentication system, the

eavesdropper needs to replace the real key pairs with counterfeit key pairs and assume

that the communicating systems will still operate given these replacements. The public

keys belonging to individual SeDSSO authentication servers and the public key for the

entire authentication service are widely distributed, and a root certificate authority

vouches for their authenticity. The public key for the certificate authority can be

62

embedded directly in the USBID as well as service provider software so that user and

service provider systems can make sure that an authentication public key is correct.

The SeDSSO public and private keys are generated using the RSA public-key

cryptography algorithm. Every communication session begins by encrypting messages

with public keys until a secure symmetric session key can be created (as described in

section 5.1.1). In order to read or modify communications the attacker needs to know a

private key or the symmetric session key generated during public/private key

communications. Given a secure RSA key pair (such as 2048-bit size) and a secure

symmetric AES key (such as 256-bit size), the probability of calculating one of the keys

within a reasonable timeframe is virtually zero. The National Institute of Standards and

Technology (NIST) estimates that based on projected computer system speed increases,

2048-bit RSA keys and 256-bit AES keys should remain secure until at least 2030 [6].

Trojan horse attacks are more subversive because they take direct control of the

user’s system. The Trojan program runs in the background and waits until a connection

has been established. It then sends requests over this connection to perform malicious

activities with the user’s identity. The communication protocol and server architecture of

an authentication system would be unable to prevent this, no matter how secure it is.

Protection must be implemented directly in the client-side software or hardware.

Although a simulation of SeDSSO has been programmed, the full client software is not

yet developed. Consequently, testing to gauge SeDSSO’s Trojan attack resistance cannot

be performed at this time.

63

Several security approaches may allow SeDSSO and other two-factor

authentication schemes to effectively resist Trojan attacks. Client software that makes it

impossible for a SeDSSO connection to be established without forced user interaction

could alert user to a Trojan operating in the background, but it is difficult to guarantee

that this interaction cannot be bypassed in some way. The new initiative known as

trusted computing may also be able to defend against these attacks by limiting the ability

of other programs to interact with the user’s session. However, at this time the future of

trusted computing is unclear and the potential advantages and disadvantages are still

being discussed [7].

64

Chapter 7

Conclusion and Future Work

7.1. Conclusion

 In this thesis we presented SeDSSO, a secure and fail-safe Internet authentication

SSO architecture. Threshold encryption and a distributed authentication service allow

SeDSSO to eliminate authentication as a central point of failure. Although the existing

single sign-on systems CorSSO and ThresPassport rely on distributed authentication with

threshold encryption, SeDSSO improves on their security and usability by implementing

a two-factor authentication scheme consisting of a username/password combination and

the USBID.

 A protocol describing the interaction between SeDSSO users, service providers,

and the authentication service has been developed. Our simulation implements every

function of this protocol and yields consistently correct operations with favorable

performance measurements. The simulation also demonstrates the advantages of

distributed authentication. Even with t–1 authentication servers disabled (almost half of

the authentication service), all functions are still available and in most cases the system

suffers only a minor performance penalty.

65

 As more people use more Internet sites, they need a way to replace many

identities with one easy-to-use highly secure entity that can be used anywhere without

fear of identity theft. SeDSSO was designed to fulfill this need, and initial tests show the

potential of our solution. However, more work must be done to test SeDSSO in an

environment that realistically simulates the stress that a high-volume Internet

authentication service would need to endure.

7.2. Future Work

7.2.1. Complete Implementation

 Now that the SeDSSO protocol has been developed and a simulation has been

programmed, the next step in extending this project is the development of a complete

realistic implementation. Each authentication server should run on its own high-

performance system and they should be arranged in a separate authentication service

network. Threshold encryption should be implemented on a longer RSA key, with tests

to measure and compare the performance of 1024-bit, 2048-bit, and possibly larger keys.

A network-isolated CA server should be used to generate the authentication public and

private key and corresponding partial keys.

Many test operations should be performed at once with sign-on attempts, account

creations, and account invalidations occurring simultaneously. This would allow for more

realistic measurements than the ones presented in chapter 6, which were performed in

isolation.

 A more realistic SeDSSO prototype requires the creation of a physical USBID

device. This USB device must consist of a specialized microcontroller, flash memory,

66

and the architecture necessary to connect them. A low-level communication protocol

between the USBID and the user’s system would need to be designed. Both the

microcontroller and an operating system driver must implement an end of this protocol to

allow communication between the client system and the authentication service. Once a

working driver is written, it would be possible to program the client software to use the

USBID as defined in chapters 4 and 5 of this thesis.

 A realistic implementation would make it possible to analyze SeDSSO’s response

to security attacks of different types. Investigation of the implementation’s response to

simple Trojan virus programs could identify potential vulnerabilities. If any

vulnerabilities are discovered, client-side modifications could be proposed and

programmed in an attempt to secure the system.

7.2.2. Unavailable Authentication Server Detection

 It may be possible to reduce unavailable authentication server delays in the sign-

on process by creating a way to monitor the status of these servers in real time. There are

two different methods by which this could be achieved, and each has a set of potential

issues that would need to be researched and resolved.

 The first method for detecting unavailable servers would involve the addition of

new systems to the authentication service known as the availability servers. An

availability server sends a small message to each authentication server at a set time

interval, and a return message from each server is required to verify availability. If an

authentication server does not respond, the availability server marks the non-responding

server as unavailable for the duration of the interval.

67

 When a user or authentication server needs to contact authentication servers at

random, the contacting party asks an availability server for an updated availability list (or

reuses a recently-acquired list that has not expired). Using this list allows the contacting

system to choose only those servers which were recently available.

 While this method would allow for propagation of the server status list to all

authentication servers and users, the bandwidth load imposed by a large number of users

would require a set of high-performance availability servers possibly rivaling the

authentication servers themselves. Implementation of this type of scheme in a SeDSSO

system would allow the true performance requirement to be assessed.

 The second method would move the creation of this server status list from a set of

availability servers to the authentication servers themselves, with each authentication

server maintaining its own list. If one server discovers that another server is unavailable,

the server that made the discovery adds a message to its list indicating this unavailability.

When a random authentication server selection must be made, this list prevents servers

which were recently unavailable from being contacted. Consequently, unavailable

servers will be avoided in the random selection process (following the unavailability

discovery) and delays will be minimized for authentication servers. Servers can be

considered available again either after a specified period of time or whenever they notify

other servers that they are back online.

This method has the advantage of not needing the addition of high-performance

availability servers. However, in order to minimize load on the authentication servers, it

may be necessary to limit the availability data to authentication servers themselves

instead of distributing it to every user on a regular basis. If this is the case, some of the

68

possible delay (when the user randomly selects an initial contact authentication server)

would remain. As with the first method, implementation would be necessary to judge the

performance cost and benefit of this change.

69

References

[1] DigitalPersona, Inc., “Solving the Weakest Link: Password Security,”

http://www.digitalpersona.com/resources/downloads/Weakest_Link_wp_0205.p

df

[2] W. Josephson, E. Sirer, and F. Schneider, “Peer-to-Peer Authentication with a

Distributed Single Sign-On Service,” 3rd Int. Workshop on Peer-to-Peer

Systems (IPTPS’04), San Diego, USA, February 2004.

[3] T. Chen, B. Zhu, S. Li, X. Cheng, “ThresPassport - A Distributed Single Sign-

On Service,” International Conference on Intelligent Computing (ICIC) 2005,

Hefei, China, August 2005.

[4] A. Shamir, “How to Share a Secret,” Communications of the ACM Vol. 22 No.

11, November 1979.

[5] L. Zhou, F. Schneider, and R. van Renesse, “COCA: A Secure Distributed On-

line Certification Authority,” ACM Transactions on Computer Systems 20, 4,

pp. 329—368, November 2002.

[6] NIST, “Recommendation for Key Management – Part 1: General (Revised),”

NIST Special Publication 800-57, May 2006.

[7] S. Schoen, “Trusted Computing – Promise and Risk,” Electronic Frontier

Foundation (EFF) web site,

www.eff.org/Infrastructure/trusted_computing/20031001_tc.pdf.

70

[8] RSA Security, “The 2nd Annual RSA Security Password Management Survey,”

August 2006.

[9] G. R. Blakley, “Safeguarding Cryptographic Keys,” AFIPS Conference

Proceedings, vol.48. 1979 National Computer Conference, pp. 313-317, 1979.

[10] M. Tompa and H. Woll, “How to Share a Secret with Cheaters,” Proceedings on

Advances in Cryptology -- CRYPTO '86, pp. 261-265, 1986.

[11] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”

ACM Transactions on Programming Languages and Systems, Volume 4 Issue

3, July 1982, pp. 382-401, 1982.

[12] M. Ghosh and S. Makki, “A Secure Framework for Electronic Payment

System,” Proceedings of the International Conference on Internet Computing,

Las Vegas, Nevada, USA, June 21-24, 2004.

[13] P. Fouque and J. Stern, “Fully Distributed Threshold RSA under Standard

Assumptions,” ASIACRYPT 2001, pp. 310-330, 2001.

[14] I. Damg˚ard and M. Koprowski, “Practical Threshold RSA Signatures without a

Trusted Dealer,” Eurocrypt ’01, pp. 152-165, 2001.

[15] V. Shoup, “Practical Threshold Signatures,” Eurocrypt ‘00, Vol. 1807, pp. 207-

220, 2000.

[16] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Communications of the ACM, pp.

120-126, 1978.

71

[17] A. Pashalidis and C. Mitchell, “A Taxonomy of Single Sign-On Systems,”

Information Security and Privacy, 8th Australasian Conference, ACISP 2003,

2003.

[18] Sun Developer Network, Java Bug Database, “Slow socket unavailability

detection on Windows,” bug ID: 4424770,

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4424770, March 2001.

[19] Microsoft TechNet, description of the TcpMaxDataRetransmissions registry

setting,

http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/regentr

y/58805.mspx?mfr=true, April 2007.

[20] J. Tuomy, “Addressing High-Risk Remote Access Applications with Challenge

/ Response User Authentication,” Telecommunications American Edition,

March ‘95, Vol. 29, p. 58, 1995.

[21] R. Smith, “Authentication: From Passwords to Public Keys,” 1st edition,

Addison-Wesley, 2002.

[22] RSA Security, RSA SecurID product information, http://www.rsa.com/.

[23] P. Madsen, Y. Koga, and K. Takahashi, “Federated Identity Management for

Protecting Users from ID Theft,” Proceedings of the 2005 Workshop on Digital

Identity Management, Fairfax, VA, 2005.

[24] A. Biryukov, J. Lano, B. Preneel, “Cryptanalysis of the Alleged SecurID Hash

Function,” Lecture Notes in Computer Science, proceedings of SAC'2003, 2003.

[25] B. Schneier, “Two-Factor Authentication: Too Little, Too Late,”

Communications of the ACM, Vol. 48, No. 4, April 2005.

72

[26] D. Kormann and A. Rubin, “Risks of the Passport Single Signon Protocol,”

IEEE Computer Networks, July 2000.

[27] ThreshSig: Java Threshold Signature Package, created by Stephen A. Weis,

http://threshsig.sourceforge.net/.

	The University of Toledo
	The University of Toledo Digital Repository
	2007

	Secure distributed single sign-on with two-factor authentication
	Kaleb Brasee
	Recommended Citation

	

